Skip to main content

Crystal structure of the "cab"-type beta class carbonic anhydrase from the archaeon Methanobacterium thermoautotrophicum.


AUTHORS

Strop PP , Smith KS K S , Iverson TM T M , Ferry JG J G , Rees DC D C . The Journal of biological chemistry. 2001 3 30; 276(13). 10299-305

ABSTRACT

The structure of the “cab”-type beta class carbonic anhydrase from the archaeon Methanobacterium thermoautotrophicum (Cab) has been determined to 2.1-A resolution using the multiwavelength anomalous diffraction phasing technique. Cab exists as a dimer with a subunit fold similar to that observed in “plant”-type beta class carbonic anhydrases. The active site zinc is coordinated by protein ligands Cys(32), His(87), and Cys(90), with the tetrahedral coordination completed by a water molecule. The major difference between plant- and cab-type beta class carbonic anhydrases is in the organization of the hydrophobic pocket. The structure reveals a Hepes buffer molecule bound 8 A away from the active site zinc, which suggests a possible proton transfer pathway from the active site to the solvent.


The structure of the “cab”-type beta class carbonic anhydrase from the archaeon Methanobacterium thermoautotrophicum (Cab) has been determined to 2.1-A resolution using the multiwavelength anomalous diffraction phasing technique. Cab exists as a dimer with a subunit fold similar to that observed in “plant”-type beta class carbonic anhydrases. The active site zinc is coordinated by protein ligands Cys(32), His(87), and Cys(90), with the tetrahedral coordination completed by a water molecule. The major difference between plant- and cab-type beta class carbonic anhydrases is in the organization of the hydrophobic pocket. The structure reveals a Hepes buffer molecule bound 8 A away from the active site zinc, which suggests a possible proton transfer pathway from the active site to the solvent.