Skip to main content

Analyzing your complexes: structure of the quinol-fumarate reductase respiratory complex.


AUTHORS

Iverson TMT M , Luna-Chavez C C , Schröder I I , Cecchini G G , Rees DC D C . Current opinion in structural biology. 2000 8 ; 10(4). 448-55

ABSTRACT

The integral membrane protein complex quinol-fumarate reductase catalyzes the terminal step of a major anaerobic respiratory pathway. The homologous enzyme succinate-quinone oxidoreductase participates in aerobic respiration both as complex II and as a member of the Krebs cycle. Last year, two structures of quinol-fumarate reductases were reported. These structures revealed the cofactor organization linking the fumarate and quinol sites, and showed a cofactor arrangement across the membrane that is suggestive of a possible energy coupling function.


The integral membrane protein complex quinol-fumarate reductase catalyzes the terminal step of a major anaerobic respiratory pathway. The homologous enzyme succinate-quinone oxidoreductase participates in aerobic respiration both as complex II and as a member of the Krebs cycle. Last year, two structures of quinol-fumarate reductases were reported. These structures revealed the cofactor organization linking the fumarate and quinol sites, and showed a cofactor arrangement across the membrane that is suggestive of a possible energy coupling function.