Skip to main content

The differential role of verbal and spatial working memory in the neural basis of arithmetic


AUTHORS

Demir ÖEÖzlem Ece , Prado JJérôme , Booth JRJames R . Developmental neuropsychology. 2014 ; 39(6). 440-58

ABSTRACT

We examine the relations of verbal and spatial working memory (WM) ability to the neural bases of arithmetic in school-age children. We independently localize brain regions subserving verbal versus spatial representations. For multiplication, higher verbal WM ability is associated with greater recruitment of the left temporal cortex, identified by the verbal localizer. For multiplication and subtraction, higher spatial WM ability is associated with greater recruitment of right parietal cortex, identified by the spatial localizer. Depending on their WM ability, children engage different neural systems that manipulate different representations to solve arithmetic problems.