Skip to main content

Neurocognitive mechanisms explaining the role of math attitudes in predicting children's improvement in multiplication skill


Suárez-Pellicioni MMacarena , Demir-Lira ÖEÖ Ece , Booth JRJames R . Cognitive, affective & behavioral neuroscience. 2021 05 06; 21(5). 917-935


Enhancing student’s math achievement is a significant educational challenge. Numerous studies have shown that math attitudes can predict improvement in math performance, but no study has yet revealed the underlying neurocognitive mechanisms explaining this effect. To answer this question, 50 children underwent functional magnetic resonance imaging (fMRI) when they were 11 (time 1; T1) and 13 (time 2; T2) years old. Children solved a rhyming judgment and a single-digit multiplication task inside the scanner at T1. The rhyming task was used to independently define a verbal region of interest in the left inferior frontal gyrus (IFG). We focused on this region because of previous evidence showing math attitudes-related effects in the left IFG for children with low math skill (Demir-Lira et al., 2019). Children completed standardized testing of math attitudes at T1 and of multiplication skill both at T1 and T2. We performed a cluster-wise regression analysis to investigate the interaction between math attitudes and improvement in multiplication skill over time while controlling for the main effects of these variables, intelligence, and accuracy on the task. This analysis revealed a significant interaction in the left IFG, which was due to improvers with positive math attitudes showing enhanced activation. Our result suggests that IFG activation, possibly reflecting effort invested in retrieving multiplication facts, is one of the possible neurocognitive mechanism by which children with positive math attitudes improve in multiplication skill. Our finding suggests that teachers and parents can help children do better in math by promoting positive math attitudes.