Skip to main content

Different amino acid substitutions at the same position in the nucleotide-binding site of aspartate transcarbamoylase have diverse effects on the allosteric properties of the enzyme.


AUTHORS

Wente| Schachman SR| HKS R| H K . The Journal of biological chemistry. 1991 11 5; 266(31). 20833-9

ABSTRACT

Site-directed mutagenesis was used to determine how the allosteric properties of aspartate transcarbamoylase (ATCase) are affected by amino acid replacements in the nucleotide binding region of the regulatory polypeptide chains. Amino acid substitutions were made for both Lys-60 and Lys-94 in the regulatory chain since those residues have been implicated by x-ray diffraction studies, chemical modification experiments, and site-directed mutagenesis as playing a role in binding CTP and ATP. Lys-60 was replaced by His, Arg, Gln, and Ala, and Lys-94 was changed to His. These mutant forms of ATCase exhibit bewildering changes in the allosteric properties compared to the wild-type enzyme as well as altered affinities for the nucleotide effectors. The enzyme containing His-60 lacks both homotropic and heterotropic effects and exhibits no detectable binding of nucleotides. In contrast, the holoenzymes containing either Gln-60 or Arg-60 retain both homotropic and heterotropic effects. Replacement of Lys-60 by Ala yields a derivative exhibiting altered heterotropic effects involving insensitivity to CTP and activation by ATP. The mutant enzyme containing His-94 in place of Lys exhibits cooperativity with reduced affinity for nucleotides. The multiple substitutions at Lys-60 in the nucleotide binding region of the regulatory chains of ATCase demonstrate that different amino acids in the same location can alter indirectly the delicate balance of interactions responsible for the allosteric properties of ATCase. The studies show that it is hazardous and frequently unwarranted from single amino acid replacements of a specific residue to attribute to that residue the properties observed for the wild-type enzyme.



Leave a Response