Skip to main content

Publications

Gama Lab:

2024

  1. Gil M and Gama V. 2024 Generation of Myelinating Oligodendrocytes from Pluripotent Stem Cells. Protocols io. dx.doi.org/10.17504/protocols.io.5jyl8265rl2w/v1
  2. Patterson AR, Needle GA, Sugiura A, Jennings EQ, Chi C, Steiner KK, Fisher EL, Robertson GL, Bodnya C, Markle JG, Sheldon RD, Jones RG, Gama V, Rathmell JC. Functional overlap of inborn errors of immunity and metabolism genes defines T cell metabolic vulnerabilities. Science Immunology. 2024 Aug 16;9(98):eadh0368. doi: 10.1126/sciimmunol.adh0368. Epub 2024 Aug 16. PMID: 39151020

2023

  1. Gil M, Gama V. 2023. Emerging mitochondrial-mediated mechanisms involved in oligodendrocyte development. J Neurosci Res.  doi: 10.1002/jnr.25151. [Epub ahead of print] Review. PubMed PMID: 36461887; NIHMSID:NIHMS1857473. Selected for the Cover.
  2. Robertson G.L., Riffle S., Patel M., Bodnya C., Marshall A., Beasley H., Garza-Lopez E., Shao J., Vue Z., Hinton Jr., A., Stoll M.S, de Wet S., Chakrabarty R.P., Theart R.P., Loos B., Chandel N., Mears J., and Gama V. 2023. DRP1 mutations associated with EMPF1 encephalopathy alter mitochondrial membrane potential and metabolic programs.  Journal of Cell Science. In press.
  3. Gil M, Hamann C., Brunger J., and Gama V. 2024. Engineering a CRISPRoff Platform to Modulate Expression of Myeloid Cell Leukemia (MCL-1) in Committed Oligodendrocyte Neural Precursor Cells. Bio-protocol. Vol. 14, Iss 1. DOI: 10.21769. Bioprotoc.4913.
  4. Jones H.E, Robertson G.L., Romero-Morales A., O’Rourke R., Siegenthaler J.A., Gama V. Leptomeningeal Neural Organoid (LMNO) Fusions as Models to Study Meninges-Brain Signaling. bioRixv. 10.1101/2023.12.01.569648

2022

  1. Beebout C., Robertson G.L., Reinfeld B., Blee A.M., Morales G.H., Brannon, J.R., Chazin W.J., Rathmell K.W., Rathmell J.C., Gama V., Hadjifrangiskou M. 2022. Subversion of mitochondrial metabolism supports intracellular bacterial pathogenesis during urinary tract infection. Nature Microbiology. In press.
  2. Romero-Morales A., Robertson G.L., Rastogi A., Rasmussen M., Temuri H., McElroy G., Chakrabarty RP., Hsu L., Almonacid P., Millis B., Chandel N.S., Cartailler J-P and Gama V. 2021. Human iPSC-derived cerebral organoids model features of Leigh Syndrome and reveal abnormal corticogenesis. Development. In press.
  3. Carmona-Berrio, D., Adarve-Rengifo I., […], Gama V., Hinton A., Gomez J.A. 2022. Sox6 expression and aneurysms of thoracic and abdominal aorta. medRxiv.  2022.05.23.22275278. Pre-print.
  4. Romero-Morales A., and Gama V. Revealing the impact of mitochondrial fitness during neurogenesis using human brain organoids. Front. Mol. Neuroscience. In press.
  5. Fort L., Gama V., Macara I. Stem cell conversion to the cardiac lineage requires nucleotide signalling from apoptosing cells. Nature Cell Biology.  https://doi.org/10.1038/s41556-022-00888-x.
  6. Robertson G.L., Riffle S., Patel M., Marshall A., Beasley H., Garza-Lopez E., Shao J., Vue Z., Hinton Jr., A., Mears J., and Gama V. DRP1-mediated mitochondrial fission is essential to maintain cristae morphology and bioenergetics. bioRxiv. 474637. Pre-print.
  7. Gil M*., Hanna M*., and Gama V. A taste of the early steps in BAX activation with FLAMBE. Cell Reports Methods. In press.*Co-first authors.

2021

  1. Cleveland A.H., Romero-Morales AI., Azcona L.A., Herrero M., Nikolova V.D., Moy S., Elroy-Stein O., Gama V*., and Gershon T*. Oligodendrocytes depend on MCL-1 to prevent spontaneous apoptosis and white matter degeneration. *Co-corresponding authors. Cell Death and Disease. In press.
  2. Fort L., Gama V., Macara I. G. Apoptotic Find-me Signals are an Essential Driver of Stem Cell Conversion To The Cardiac Lineage. bioRxiv.  https://doi.org/10.1101/2021.06.21.449262. Pre-print.
  3. Mermer F., Poliquin S., Rigsby K., Rastogi A., Shen W., Romero-Morales A.I., Nwosu G., McGrath P., Demerast S., Aoto J., Bilousova G., Lal D., Gama V., and Kang J-Q. Common molecular mechanisms of SLC6A1 variant-mediated neurodevelopmental disorders in astrocytes and neurons. Brain. Volume 144, Issue 8., August 2021, Pages 2499-2512.
  4. Baum T., and Gama V. Dynamic properties of mitochondria during human corticogenesis. Development. In press.
  5. Ortolano, N.A., Kline, L.A., Rasmussen, M.L., Rose, K.L., Joshi, P., Connely, J.P., Miller-Pruett, S., and Gama, V. The non-canonical cullin-RING-ligases CUL9 and APC/C interact in human pluripotent stem cells. PLOS ONE. In press.
  6. Cleveland A.H., Romero-Morales AI., Azcona L.A., Herrero M., Nikolova V.D., Moy S., Elroy-Stein O., Gama V*., and Gershon T*. Leukodystrophy resembling Vanishing White Matter Disease is recapitulated by brain-specific depletion of apoptosis regulator MCL-1. *Co-corresponding authors. bioRxiv. doi: https://doi.org/10.1101/2020.12.02.408138. Pre-print.

2020

  1. Joshi P., Bodnya C., Rasmussen M., Romero-Morales A.I, Bright A, and Gama V. Modeling the function of BAX and BAK in early human brain development using iPSC-derived systems. Cell Death and Disease. In press.
  2. Rasmussen M., Robertson G., and Gama V., Break on Through: Golgi-Derived Vesicles Aid in Mitochondrial Fission. Cell Metabolism. Volume 31, Issue 6, P1047-1049, JUNE 02, 2020
  3. Taneja N., Bersi M., Rasmussen M.L., Gama V., Merryman W.D. and Burnette D. Inhibition of focal adhesion kinase increases myofibril viscosity in cardiac myocytes. In press at Cytoskeleton.
  4. Romero-Morales A., Robertson G., Rastogi A., Temuri H., Rasmussen M., McElroy G., Hsu L., Almonacid P., Millis B., Chandel N.S., Cartailler J-P and Gama V. Human iPSC-derived cerebral organoids model features of Leigh Syndrome and reveal abnormal corticogenesis. bioRxiv. Pre-print.
  5. Rasmussen M#, Taneja N#, Neininger A, Wang L, Shi L., Robertson G., Knollmann B., Burnette D. and Gama V. #Co-first authors. 2020. MCL-1 inhibition by selective BH3 mimetics disrupts mitochondrial dynamics causing loss of viability and functionality of human cardiomyocytes. In press at iScience.
  6. Taneja N., Fenix A., Cooper J., Snider C., Bersi M., Gama V., and Burnette D. 2020. Precise tuning of cortical contractility regulates cell shape during cytokinesis. Cell Reports. Apr 7; 31(1):107477.
  7. Robertson G., Romero-Morales A., Lippmann E., Gama V. Uncovering cell biology in the third dimension. MBoC. Special Issue in Stem Cells. Accepted.
  8. Rasmussen M.L., and Gama V.  A connection in life and death: The BCL-2 family coordinates mitochondrial network dynamics and stem cell fate. Book Chapter. IRCMB: Cell Death Regulation In Health And Disease Part A Vol 351. In press.

2019

  1. Romero-Morales A*., O’Grady B*., Balotin K., Bellan L., Lippmann E#., and Gama V#. Spin∞ an improved miniaturized spinning bioreactor for the generation of human cerebral organoids from pluripotent stem cells. HardwareX Special Issue in Neuroscience. In press. *Co-first authors. #Co-corresponding authors.
  2. Rastogi A., Contreras E., Joshi P. and Gama V. 2019. Remodeling of Mitochondrial Morphology and Function: An Emerging Hallmark of Cellular Reprogramming. Cell Stress. In press. Selected for the cover.
  3. Saleem M., Hodgkinson CP., Xiao L., Gimenez-Bastida JA., Rasmussen M., Foss J., Miroutsou M., Gama V., Dzau VJ., Gomez JA. 2019. Sox6 as a new modulator of renin expression in the kidney American Journal of Physiology-Kidney Physiology. In press.
  4. Greenplate A., McClanahan D., Oberholtzer B., Doxie D, Roe C., Diggins K., Leelatian N., Rasmussen M., Kelley M., Gama V., Siska P, Rathmell J., Ferrell P., Johnson D., and Irish J. 2019. Computational immune monitoring reveals abnormal double-negative T cells present across human tumor types. Cancer Immunology Research. 7(1):86-99.
  5. Rasmussen M#, Taneja N#, Neininger A, Wang L, Shi L., Knollmann B., Burnette D., and Gama V. #Co-first authors. 2019. MCL-1 function in modulating mitochondrial dynamics is essential in human induced pluripotent stem cell-derived cardiomyocytes. bioRxiv, 687095. Pre-print.
  6. Pre-print: Romero-Morales A*., O’Grady B*., Balotin K., Bellan L., Lippmann E#., and Gama V#. Spin∞ an improved miniaturized spinning bioreactor for the generation of human cerebral organoids from pluripotent stem cells. bioRxiv.doi: https://doi.org/10.1101/687095. *Co-first authors. #Co-corresponding authors.
  7. Saleem M., Hodgkinson CP., Xiao L., Gimenez-Bastida JA., Foss J., Miroutsou M., Gama V., Dzau VJ., Gomez JA.  2019. Sox6: A new modulator of renin expression during physiological conditions. bioRxiv:10.1101/556118.Pre-print.

2018

  1. Rasmussen M.L, Kline L.A., Park K.P., Ortolano N.A, Romero-Morales A.I, Anthony C.C, Beckermann K.E., and Gama V.A non-apoptotic function of MCL-1 in promoting pluripotency and modulating mitochondrial dynamics in stem cells. Stem Cell Reports. 2018
  2. Rasmussen M.L ,  Ortolano N.A, Romero-Morales A.I, and Gama V. Wnt Signaling and Its Impact on Mitochondrial and Cell Cycle Dynamics in Pluripotent Stem Cells. Genes. 2018, 9(2), 109.

2017

  1. Romero-Morales A., Ortolano N., and Gama V. Apical polarization and lumenogenesis: The apicosome sheds new light. Journal of Cell Biology. Published November 14, 2017. http://jcb.rupress.org/content/early/2017/11/13/jcb.201710028
  2. Ortolano N., and Gama V. Chronicle of a Neuronal Death Foretold: Preventing Aging by Keeping MGRN1 at the Nucleus. Molecular Cell, Volume 66, Issue 3, p301–303. http://www.sciencedirect.com/science/article/pii/S1097276517302708?via%3Dihub
  3. D’Angelo W., Gurung C., Acharya D., Chen B., Ortolano N., Gama V., and Yan-Lin Guo. The Molecular Basis for the Lack of Inflammatory Responses in Mouse Embryonic Stem Cells. Journal of Immunology, January 27,2017, 1601068. DOI: https://doi.org/10.4049/jimmunol.1601068

Vivian’s Postdoc & Ph.D. work:

2015

  1. Gama V. and Deshmukh M. 2015.  Life after MOMP.  Mol. Cell.

2014

  1. Gama V., Swahari V., Schaffer J., Kole A., Huang Y., Evans A., Golitz B., Sciaky N., Johnson G. and Deshmukh M. 2014. PARC/Cul9 Mediates the Degradation of Mitochondrial-released Cytochrome c. Science Signaling. 7, ra67. (Perspective in Sci. Signal. 7, pe17 (2014)).

2013

  1. Crowther A.J#, Gama V#, Bevilacqua A., Chang S.X., Yuan H., Deshmukh M. and Gershon T.R. 2013. Tonic activation of Bax primes neural progenitors for rapid apoptosis through a mechanism preserved in medulloblastoma.  J. Neuroscience. 33: 18098-18108.  #Equal contribution.
  2. Gama V. and Deshmukh M. 2013. Adenosine: Essential for life but licensed to kill.  Mol. Cell.  50(3):307-8.

2012

  1. Dumitru R#, Gama V#, Fagan BM, Swahari VJ., Bower JJ, Pevny LH and Deshmukh M. 2012. Human Embryonic Stem Cells have Constitutively Active Bax at the Golgi and are Primed to Undergo Rapid Apoptosis. Mol. Cell. 46: 573-583.  #Equal contribution. (Preview in Mol. Cell (2012) 46:554-556; Highlighted in Nat. Rev. Mol. Cell Bio. (2012) 13: 340).
  2. Gama V. and Deshmukh M. 2012. Human ES cells: Living on the Edge. Cell Cycle. 11(21): 3905-3906.
  3. Garcia I., Crowther A., Gama V., Miller R., Deshmukh M., Gershon T., 2012. Bax-deficiency prolongs cerebellar neurogenesis, accelerates medulloblastoma formation and paradoxically increases both malignancy and differentiation. Oncogene. 1-11.
  4. Londoño C., Osorio C., Gama V. and Alzate O. 2012. Mortalin, Apoptosis and Neurodegeneration. Review.  Biomolecules.  2: 143-164.

2011

  1. Leskov KS., Araki S., Lavik JP., Gomez J., Gama V., Trougakos I.P., Gonos E.S., Matsuyama S., and Boothman DA. 2011. CRM1-mediated Regulation of Nuclear Clusterin (nCLU), an Ionizing Radiation-stimulated, Bax-dependent Pro-death Factor. J. Biol. Chem. 286(46):40083-40090.
  2. Gomez J., Hajkova D., Gama V., Yeh IY., Miyagi M., and Matsuyama S.  2011. Cell Permeable Pentapeptides (CPP5s) as Protein Transduction Domains. Pharmaceuticals. 3(12):3594-3613.

2009

  1. Gomez J., Gomez JA, Sun W, Gama V., Hajkova D, Yoshida T, Wu Z, Miyagi M, Pink JJ, Jackson MW, Danielpour D, Matsuyama S. 2009. The C-terminus of interferon gamma receptor beta chain (IFNgammaR2) has antiapoptotic activity as a Bax inhibitor. Cancer Biol. Therapy. 8(18):1771-86.
  2. Gama V., Gomez JA., Mayo LD. Danielpour D., Song K., Jackson M.W., Haas AL., and Matsuyama S.  2009.  Hdm2 is a Ubiquitin Ligase of Ku70-Akt Promotes Cell Survival by Inhibiting Hdm2-dependent Ku70 Destabilization. Cell Death Differ. 16(5):758-769.

2008

  1. Plesca D. Mazumder S., Gama V., Matsuyama S., Almasan A.  2008. A C-terminal fragment of Cyclin E, generated by caspase-mediated cleavage, is degraded in the absence of a recognizable phosphodegron.  J. Biol. Chem.   283(45): 30796-30803.
  2. Yurchenko V, Xue Z, Gama V.,Matsuyama S., Sadofsky M. 2008.Ku70 is stabilized by increased cellular SUMO. Biochem. Biophys. Res. Commun. 366(1):263-268.

2007

  1. Gomez J, Gama V., Yoshida T, Sun W, Hayes P, Leskov K, Boothman DA, and Matsuyama S. 2007. Bax Inhibiting Peptide and Cell Penetrating Penta-Peptides. Biochem. Soc. Trans. 35 (Pt 4):797-801.
  2. Gomez J., Gama V., and Matsuyama S.  2007. Cell Permeable Penta-Peptides Derived from Bax Inhibiting Peptide. Handbook of Cell-Penetrating Peptides: 469-481.  2nd Edition, CRC Press
  3. Li Y., Yokota T., Gama V., Yoshida T., Gomez J., Ishikawa,K., Cohen HY., Sinclair D.A., Mizusawa, H., and Matsuyama S. 2007. Bax-inhibiting peptide (BIP) protects cells from polyglutamine toxicity that induces Ku70 acetylation. Cell Death Differ. 14(12):2058-67.

2006 (and previous years)

  1. Gama V., Yoshida T., Gomez J., Basile D., Mayo L., Haas A., and Matusuyama S. 2006.  Involvement of the Ubiquitin Pathway in Decreasing Ku70 Levels in Response to Drug-induced Apoptosis.  Exp. Cell Res. 312(4):488-499.
  2. Yoshida T., Tomioka I., Nagahara T., Holyst T., Hayes P., Gama V., Okuno M., Chen Y , Abe Y., Kanouchi T., Sasada H., Wang D., Yokota T., and Matsuyama S. 2004. Bax inhibiting peptide derived from mouse and rat Ku70. Biochem. Biophys. Res. Commun. 321(4): 961-966.
  3. Martinez J., Gama V., Valderrama L., Leiby D., and N.G. Saravia. 2000. Clonal diversity in the expression and stability of the metastatic capability of Leishmania guyanensis in the golden hamster. J. Parasitol. 86(4):792-799.
  4. Lucumi A., Gama V., Robledo S., and N.G. Saravia. 1998. Sensitivity of Leishmania to Pentavalent Antimony is correlated with the formation of cleavable DNA-PROTEIN complexes. Antimicrob. Agents and Chemother. 42(8):1990-5.
  5. Osorio Y., Gama V., and B. Travi. 1998. Reinfection in American Cutaneous Leishmaniasis: Evaluation of Clinical outcomes in the hamster model. Mem. Inst. Oswaldo Cruz. 93(3): 353-356.
  6. Gama V., Valderrama L., and N.G. Saravia. 1997. Pathogenicity and Virulence models in Leishmania Viannia. Biomedica. 17(2):199-201.