The in vivo specificity of synaptic Gβ and Gγ subunits to the α adrenergic receptor at CNS synapses
AUTHORS
- PMID: 30737458[PubMed].
- PMCID: PMC6368627.
ABSTRACT
G proteins are major transducers of signals from G-protein coupled receptors (GPCRs). They are made up of α, β, and γ subunits, with 16 Gα, 5 Gβ and 12 Gγ subunits. Though much is known about the specificity of Gα subunits, the specificity of Gβγs activated by a given GPCR and that activate each effector in vivo is not known. Here, we examined the in vivo Gβγ specificity of presynaptic α-adrenergic receptors (αARs) in both adrenergic (auto-αARs) and non-adrenergic neurons (hetero-αARs) for the first time. With a quantitative MRM proteomic analysis of neuronal Gβ and Gγ subunits, and co-immunoprecipitation of tagged αARs from mouse models including transgenic FLAG-αARs and knock-in HA-αARs, we investigated the in vivo specificity of Gβ and Gγ subunits to auto-αARs and hetero-αARs activated with epinephrine to understand the role of Gβγ specificity in diverse physiological functions such as anesthetic sparing, and working memory enhancement. We detected Gβ, Gγ, Gγ, and Gγ with activated auto αARs, whereas we found Gβ and Gγ preferentially interacted with activated hetero-αARs. Further understanding of in vivo Gβγ specificity to various GPCRs offers new insights into the multiplicity of genes for Gβ and Gγ, and the mechanisms underlying GPCR signaling through Gβγ subunits.