Skip to main content

Single-Particle Spectroscopic Study on Fluorescence Enhancement by Plasmon Coupled Gold Nanorod Dimers Assembled on DNA Origami


AUTHORS

Zhang T. , Gao N. , Li S. , Lang M.J. , Xu Q-H. . J. Phys. Chem. Lett.. 2015 ; 6(11). 2043–2049

ABSTRACT

PDF  Link

Metal-enhanced fluorescence has attracted much attention due to its scientific importance and lots of potential applications. Plasmon coupled metal nanoparticles have been demonstrated to further improve the enhancement effects. Conventional studies of metal-enhanced fluorescence on the bulk systems are complicated by the ensemble average effects over many critical factors with large variations. Here, fluorescence enhancement of ATTO-655 by a plasmon coupled gold nanorod dimer fixed on a DNA origami nanobreadboard was studied on the single-particle level. A series of gold nanorod dimers with linear orientation and different gap distances ranging from 6.1 to 26.0 nm were investigated to explore the plasmon coupling effect on fluorescence enhancement. The results show that the dimer with the smallest gap (6.1 nm) gives the highest enhancement (470-fold), and the enhancement gradually decreases as the gap distance increases and eventually approaches that from a monomer (120-fold). This trend is consistent with the numerical calculation results. This study indicates that plasmon coupling in gold nanorod dimers offers further increased excitation efficiency to achieve large fluorescence enhancement.