Skip to main content

The t(12;21) translocation converts AML-1B from an activator to a repressor of transcription.


AUTHORS

Hiebert SWS W , Sun W W , Davis JN J N , Golub T T , Shurtleff S S , Buijs A A , Downing JR J R , Grosveld G G , Roussell MF M F , Gilliland DG D G , Lenny N N , Meyers S S . Molecular and cellular biology. 1996 4 ; 16(4). 1349-55

ABSTRACT

The t(12;21) translocation is present in up to 30% of childhood B-cell acute lymphoblastic and fuses a potential dimerization motif from the ets-related factor TEL to the N terminus of AML1. The t(12;21) translocation encodes a 93-kDa fusion protein that localizes to a high-salt- and detergent-resistant nuclear compartment. This protein binds the enhancer core motif, TGTGGT, and interacts with the AML-1-binding protein, core-binding factor beta. Although TEL/AML-1B retains the C-terminal domain of AML-1B that is required for transactivation of the T-cell receptor beta enhancer, it fails to activate transcription but rather inhibits the basal activity of this enhancer. TEL/AML-1B efficiently interferes with AML-1B dependent transactivation of the T-cell receptor beta enhancer, and coexpression of wild-type TEL does not reverse this inhibition. The N-terminal TEL helix-loop-helix domain is essential for TEL/AML-1B-mediated repression. Thus, the t(12;21) fusion protein dominantly interferes with AML-1B-dependent transcription, suggesting that the inhibition of expression of AML-1 genes is critical for B-cell leukemogenesis.


The t(12;21) translocation is present in up to 30% of childhood B-cell acute lymphoblastic and fuses a potential dimerization motif from the ets-related factor TEL to the N terminus of AML1. The t(12;21) translocation encodes a 93-kDa fusion protein that localizes to a high-salt- and detergent-resistant nuclear compartment. This protein binds the enhancer core motif, TGTGGT, and interacts with the AML-1-binding protein, core-binding factor beta. Although TEL/AML-1B retains the C-terminal domain of AML-1B that is required for transactivation of the T-cell receptor beta enhancer, it fails to activate transcription but rather inhibits the basal activity of this enhancer. TEL/AML-1B efficiently interferes with AML-1B dependent transactivation of the T-cell receptor beta enhancer, and coexpression of wild-type TEL does not reverse this inhibition. The N-terminal TEL helix-loop-helix domain is essential for TEL/AML-1B-mediated repression. Thus, the t(12;21) fusion protein dominantly interferes with AML-1B-dependent transcription, suggesting that the inhibition of expression of AML-1 genes is critical for B-cell leukemogenesis.