RUNX1/AML1 DNA-binding domain and ETO/MTG8 NHR2-dimerization domain are critical to AML1-ETO9a leukemogenesis.
AUTHORS
- PMID: 19036704[PubMed].
- PMCID: PMC2630273.
ABSTRACT
The 8;21 translocation, which involves the gene encoding the RUNX family DNA-binding transcription factor AML1 (RUNX1) on chromosome 21 and the ETO (MTG8) gene on chromosome 8, generates AML1-ETO fusion proteins. Previous analyses have demonstrated that full-length AML1-ETO blocks AML1 function and requires additional mutagenic events to promote leukemia. More recently, we have identified an alternatively spliced form of AML1-ETO, AML1-ETO9a, from t(8;21) acute myeloid leukemia (AML) patient samples. AML1-ETO9a lacks the C-terminal NHR3 and NHR4 domains of AML1-ETO and is highly leukemogenic in the mouse model. Here, we report that the AML1 DNA-binding domain and the ETO NHR2-dimerization domain, but not the ETO NHR1 domain, are critical for the induction of AML by AML1-ETO9a. A region between NHR1 and NHR2 affects latency of leukemogenesis. These results provide valuable insight into further analysis of the molecular mechanism of t(8;21) in leukemogenesis.
The 8;21 translocation, which involves the gene encoding the RUNX family DNA-binding transcription factor AML1 (RUNX1) on chromosome 21 and the ETO (MTG8) gene on chromosome 8, generates AML1-ETO fusion proteins. Previous analyses have demonstrated that full-length AML1-ETO blocks AML1 function and requires additional mutagenic events to promote leukemia. More recently, we have identified an alternatively spliced form of AML1-ETO, AML1-ETO9a, from t(8;21) acute myeloid leukemia (AML) patient samples. AML1-ETO9a lacks the C-terminal NHR3 and NHR4 domains of AML1-ETO and is highly leukemogenic in the mouse model. Here, we report that the AML1 DNA-binding domain and the ETO NHR2-dimerization domain, but not the ETO NHR1 domain, are critical for the induction of AML by AML1-ETO9a. A region between NHR1 and NHR2 affects latency of leukemogenesis. These results provide valuable insight into further analysis of the molecular mechanism of t(8;21) in leukemogenesis.