Skip to main content

Identification of AML-1 and the (8;21) translocation protein (AML-1/ETO) as sequence-specific DNA-binding proteins: the runt homology domain is required for DNA binding and protein-protein interactions.


AUTHORS

Meyers SS , Downing JR J R , Hiebert SW S W . Molecular and cellular biology. 1993 10 ; 13(10). 6336-45

ABSTRACT

The AML1 gene on chromosome 21 is disrupted in the (8;21)(q22;q22) translocation associated with acute myelogenous leukemia and encodes a protein with a central 118-amino-acid domain with 69% homology to the Drosophila pair-rule gene, runt. We demonstrate that AML-1 is a DNA-binding protein which specifically interacts with a sequence belonging to the group of enhancer core motifs, TGT/cGGT. Electrophoretic mobility shift analysis of cell extracts identified two AML-1-containing protein-DNA complexes whose electrophoretic mobilities were slower than those of complexes formed with AML-1 produced in vitro. Mixing of in vitro-produced AML-1 with cell extracts prior to gel mobility shift analysis resulted in the formation of higher-order complexes. Deletion mutagenesis of AML-1 revealed that the runt homology domain mediates both sequence-specific DNA binding and protein-protein interactions. The hybrid product, AML-1/ETO, which results from the (8;21) translocation and retains the runt homology domain, both recognizes the AML-1 consensus sequence and interacts with other cellular proteins.


The AML1 gene on chromosome 21 is disrupted in the (8;21)(q22;q22) translocation associated with acute myelogenous leukemia and encodes a protein with a central 118-amino-acid domain with 69% homology to the Drosophila pair-rule gene, runt. We demonstrate that AML-1 is a DNA-binding protein which specifically interacts with a sequence belonging to the group of enhancer core motifs, TGT/cGGT. Electrophoretic mobility shift analysis of cell extracts identified two AML-1-containing protein-DNA complexes whose electrophoretic mobilities were slower than those of complexes formed with AML-1 produced in vitro. Mixing of in vitro-produced AML-1 with cell extracts prior to gel mobility shift analysis resulted in the formation of higher-order complexes. Deletion mutagenesis of AML-1 revealed that the runt homology domain mediates both sequence-specific DNA binding and protein-protein interactions. The hybrid product, AML-1/ETO, which results from the (8;21) translocation and retains the runt homology domain, both recognizes the AML-1 consensus sequence and interacts with other cellular proteins.