Skip to main content

Neurobiology of aging


AUTHORS

Bychkov ERE R , Gurevich VV V V , Joyce JN J N , Benovic JL J L , Gurevich EV E V . Neurobiology of aging. 2008 3 ; 29(3). 379-96

ABSTRACT

Arrestins and G proteins-coupled receptor kinases (GRKs) regulate signaling and trafficking of G protein-coupled receptors. We investigated changes in the expression of arrestins and GRKs in the striatum of patients with Parkinson’s disease without (PD) or with dementia (PDD) at postmortem using Western blotting and ribonuclease protection assay. Both PD and PDD groups had similar degree of dopamine depletion in all striatal regions. Arrestin proteins and mRNAs were increased in the PDD group throughout striatum. Protein and mRNA of GRK5, the major subtype in the human striatum, and GRK3 were also upregulated, whereas GRK2 and 6 were mostly unchanged. The PD group had lower concentration of arrestins and GRKs than the PDD group. There was no statistical link between the load of Alzheimer’s pathology and the expression of these signaling proteins. Upregulation of arrestins and GRK in PDD may confer resistance to the therapeutic effects of levodopa often observed in these patients. In addition, increased arrestin and GRK concentrations may lead to dementia via perturbation of multiple signaling mechanisms.


Arrestins and G proteins-coupled receptor kinases (GRKs) regulate signaling and trafficking of G protein-coupled receptors. We investigated changes in the expression of arrestins and GRKs in the striatum of patients with Parkinson’s disease without (PD) or with dementia (PDD) at postmortem using Western blotting and ribonuclease protection assay. Both PD and PDD groups had similar degree of dopamine depletion in all striatal regions. Arrestin proteins and mRNAs were increased in the PDD group throughout striatum. Protein and mRNA of GRK5, the major subtype in the human striatum, and GRK3 were also upregulated, whereas GRK2 and 6 were mostly unchanged. The PD group had lower concentration of arrestins and GRKs than the PDD group. There was no statistical link between the load of Alzheimer’s pathology and the expression of these signaling proteins. Upregulation of arrestins and GRK in PDD may confer resistance to the therapeutic effects of levodopa often observed in these patients. In addition, increased arrestin and GRK concentrations may lead to dementia via perturbation of multiple signaling mechanisms.