Skip to main content

Polarization of the effects of autoimmune and neurodegenerative risk alleles in leukocytes.


AUTHORS

Raj TTowfique , Rothamel K Katie , Mostafavi S Sara , Ye C Chun , Lee MN Mark N , Replogle JM Joseph M , Feng T Ting , Lee M Michelle , Asinovski N Natasha , Frohlich I Irene , Imboywa S Selina , Von Korff A Alina , Okada Y Yukinori , Patsopoulos NA Nikolaos A , Davis S Scott , McCabe C Cristin , Paik HI Hyun-il , Srivastava GP Gyan P , Raychaudhuri S Soumya , Hafler DA David A , Koller D Daphne , Regev A Aviv , Hacohen N Nir , Mathis D Diane , Benoist C Christophe , Stranger BE Barbara E , De Jager PL Philip L . Science (New York, N.Y.). 2014 5 2; 344(6183). 519-23

ABSTRACT

To extend our understanding of the genetic basis of human immune function and dysfunction, we performed an expression quantitative trait locus (eQTL) study of purified CD4(+) T cells and monocytes, representing adaptive and innate immunity, in a multi-ethnic cohort of 461 healthy individuals. Context-specific cis- and trans-eQTLs were identified, and cross-population mapping allowed, in some cases, putative functional assignment of candidate causal regulatory variants for disease-associated loci. We note an over-representation of T cell-specific eQTLs among susceptibility alleles for autoimmune diseases and of monocyte-specific eQTLs among Alzheimer's and Parkinson's disease variants. This polarization implicates specific immune cell types in these diseases and points to the need to identify the cell-autonomous effects of disease susceptibility variants.


To extend our understanding of the genetic basis of human immune function and dysfunction, we performed an expression quantitative trait locus (eQTL) study of purified CD4(+) T cells and monocytes, representing adaptive and innate immunity, in a multi-ethnic cohort of 461 healthy individuals. Context-specific cis- and trans-eQTLs were identified, and cross-population mapping allowed, in some cases, putative functional assignment of candidate causal regulatory variants for disease-associated loci. We note an over-representation of T cell-specific eQTLs among susceptibility alleles for autoimmune diseases and of monocyte-specific eQTLs among Alzheimer's and Parkinson's disease variants. This polarization implicates specific immune cell types in these diseases and points to the need to identify the cell-autonomous effects of disease susceptibility variants.


Leave a Response