Protocol for TAP Tag Purification

Tandem Affinity Purification (TAP) Reference:

Rigaut, G., Shevchenko, A., Rutz, B., Wilm, M., Mann, M., and Seraphin, B. 1999. A generic protein purification method for protein complex characterization and proteome exploration. *Nature Biotechnology* **17**: 1030-1032. The following protocol for *S. pombe* was adapted from the Seraphin Lab protocol. web site: http://www.embl-heidelberg.de/ExternalInfo/seraphin/TAP.html

Stock Solutions:

14.3 M β-Mercaptoethanol (BME)

Buffers:

IPP150 (100 ml)

[Final]			[Stock]
10 mM	Tris-HCl pH 8.0	1 ml	1 M
150 mM	NaCl	3 ml	5 M
0.1%	NP-40	1 ml	10%
	↑ volume to 100 ml		

TEV Cleavage Buffer (TEV CB) (50 ml)

[Final]			[Stock]	
10 mM	Tris-HCl pH 8.0	0.5 ml	1 M	
150 mM	NaCl	1.5 ml	5 M	
0.1%	NP-40	0.5 ml	10%	
0.5 mM	EDTA	50 μl	0.5M	
1.0 mM	DTT	50 µl	1 M	*
	↑ volume to 50 ml			

IPP150 Calmodulin Binding Buffer (CBB) (50 ml)

11 100 0	annouann binaing ba	$\frac{1101}{2} \left(\frac{2}{3} \frac{2}{3} \right) \left(\frac{1}{3} \right)$	<i>y</i> 1111 <i>y</i>	
[Final]			[Stock]	
10 mM	Tris-HCl pH 8.0	0.5 ml	1 M	
150 mM	NaCl	1.5 ml	5 M	
1 mM	Mg ²⁺ Acetate	50 µl	1 M	
1 mM	Imidazole	50 µl	1 M	
2 mM	CaCl ₂	100 µl	1 M	
10 mM	BME	34.95 µl	14.3 M	*
	↑ volume to 50 ml	-		

divide into two 50 ml aliquots

adjust one 50 ml aliquot to 0.1% NP-40 by adding 500 μl 10% NP-40 adjust one 10 ml aliquot to 0.02% NP-40 by adding 20 μl 10% NP-40

*Add DTT or BME immediately before use.

TAP Tag Purification Buffers (continued)

IPP150 Calmodulin Elution Buffer (CEB) (10 ml)

[Final]			[Stock]
10 mM	Tris-HCl pH 8.0	0.1 ml	1 M
150 mM	NaCl	0.3 ml	5 M
0.02%	NP-40	20 μl	10%
1 mM	Mg ²⁺ Acetate	10 μl	1 M
1 mM	Imidazole	10 μl	1 M
20 mM	EGTA	400 μl	0.5 M
10 mM	BME	* 7.0 µl	14.3 M
	↑ volume to 10 ml		

Note: 0.05% NP-40 may be used in this buffer.

NP-40 Buffer (3 L)

Til -40 Duller (5 L)		
[Final]		[Stock]
6 mM Na ₂ HPO ₄	2.56 g	
4 mM NaH ₂ PO4 H ₂ 0	1.66g	
1% NONIDET P-40	30 ml	100%
150 mM NaCl	26.3 g	
2 mM EDTA	12 ml	0.5 M
50 mM NaF	6.3 g	
4 ug/ml leupeptin	12 mg	
0.1 mM Na ₃ VO ₄	3 ml or	100 mM
	0.6 ml	0.5 M
	↑ volume to 3 L	

Add the following protease inhibitors per 50 ml NP-40 buffer:

1 complete tablet, EDTA free (Boehringer Mannheim Cat. No. 1873580) 130 μl 0.5 M Benzamidine prepared fresh in 100% ethanol (400 mg in 5 ml EtOH) 500 μl 0.1 M PMSF prepared fresh in 100% ethanol (87 mg in 5 ml EtOH)

Materials:

Acid Washed Glass Beads (425-600 microns); Sigma Cat. No. G-8772

Bead Beater; BioPsec Products Cat.#1107900

50 ml tube Falcon 2070

Nalgene 25X89 mm tubes; Cat.# 3430-2526

Biorad Poly-Prep Chromatography Column 0.8 X 4 cm; Cat. # 731-1550

TEV; Gibco Cat. # 10127-017

Silver Stain Kit; Amersham Cat. # 17-1150-01

Novex Dry Ease Kit; Cat. # NI2387

IgG Sepharose; Pharmacia Cat.#17-0969-01

Calmodulin Affinity Resin; Stratagene Cat. #214303-52

^{*}Add DTT or BME immediately before use.

Purification Procedure:

- 1. Grow 2L of yeast in 4X YE to $1.0 \times 10^7 1.4 \times 10^7$ (OD₅₉₅ = 0.5-0.7)
- 2. To prepare protein lysate, the yeast cells are lysed in a bead beater
 - a. completely fill the lysis chamber with cell pellet and glass beads
 - b. Add NP-40 buffer plus Protease Inhibitors until entire chamber is immersed then screw it into the ice-water jacket and add ice + water as heat sink.
 - c. To lyse cells: 30 seconds on, pause 30 seconds to dissipate heat, repeat for \sim 7 minutes until sufficient lysis is achieved (\sim 60-90% \rightarrow take a small aliquot and check efficiency by microscopy)
- 3. Transfer lysate to 50 ml Falcon tube, extract beads with NP-40 plus inhibitors and transfer to 50 ml tube. Pellet for 3-5 min. in table-top centrifuge at 4°C and 3500 rpm.
- 4. Retrieve supernatant to a 50 ml Falcon tube (note: avoid collecting the bottom pellet and the top lipid layer). Add 1ml IgG Sepharose beads in NP-40 Buffer (1:1 slurry) and incubate on a rotating platform at 4°C for 1 hr.

Note: To prepare IgG/Sepharose, wash IgG/Sepharose Beads with NP-40 Buffer (no inhibitors) to remove ethanol, and resuspend in 1:1 slurry with NP-40 buffer. Want 500ul dry beads + 500ul NP-40 to make 1:1 slurry

- 5. Pour lysate and beads onto a Biorad Poly-Prep Chromatography Column (0.8 X 4 cm) with a reservoir. Allow the column to pack by gravity.
- 6. Wash beads with 30 ml IPP150 Buffer (3 times, 10ml each wash), make sure beads come up each time
- 7. Wash beads with 10 ml TEV cleavage buffer (prepared fresh)
- 8. Close bottom of the column with a stopper (supplied with column).

Add 1 ml TEV cleavage buffer and 300-500 U TEV (50 ul).

Plug top of column (plug supplied) and incubate on rotating platform for 1.5 hr at 16°C.

9. Drain eluate into a new column that is sealed at the bottom.

Wash out old column with 1.0 ml TEV CB.

- 10. Add 3 volumes of $C\underline{\mathbf{B}}B$ (6ml 0.1% $CBB+13ul\ CaCl_2$) to the TEV supernatant in the new column plus 3 $\mu l\ 1M\ CaCl_2$ per ml IgG eluate, add 300 $\mu l\ Calmodulin$ resin in $C\underline{\mathbf{B}}B$ (1:1 slurry), and incubate on rotating platform for 1 hr at 4°C. (Wash CBB beads beforehand with 0.1% NP-40 CBB buffer (3x 1ml)
- 11. Wash beads 1X 1 ml C**B**B (**0.1%** NP-40).

Wash beads 1X 1 ml CBB (0.02% NP-40).

Note: detergent is harmful for mass spec.

12. Elute twice with 1.0 ml CEB containing 0.02% NP-40 into a 1.5 ml eppendorf on ice. Before putting into eppendorf, put cap on end of column, flick a couple of times and let sit for a couple of minutes.

13. Split eluate in half into 2 eppendorf tubes, and TCA precipitate proteins. 1st elution put 80% (800ul) into tube for mass spec. Put 20% (200ul) into tube for silver staining. 2nd elution put 80% (800ul) into tube for silver staining and 20% (200ul) into tube for mass spec. Add 333ul of 25% TCA to each tube to precipitate.

TCA precipitation: Adjust eluate to 25% TCA with 100% TCA and place on ice for 30' with periodic vortexing.

Spin max speed at 4°C for 30 minutes.

Wash 1X ice-cold (-20°C)(1ml) acetone containing 0.05 N HCl, spin 10 minute max speed 4°C. Wash 1X ice-cold (-20°C)(1ml) acetone only, spin 10 minute max speed at 4°C. Remove supernatant carefully, and dry pellets in the speed vac.

Pellet $1 \rightarrow$ save for mass spec.

Pellet $2 \rightarrow$ resuspend in 1X gel sample buffer (35ul LDS Sample Buffer), resolve on SDS-PAGE and Silver stain with Amersham kit.

Note: We prefer the use of 4-12% Novex gels with MOPS buffer at this step.