Stress Detection of Autistic Adults during Simulated Job Interviews Using a Novel Physiological Dataset and Machine Learning
AUTHORS
ABSTRACT
The interview process has been identified as one of the major barriers to employment of autistic individuals, which contributes to the staggering rate of under and unemployment of autistic adults. Decreasing stress during the interview has been shown to improve interview performance. However, in order to effectively provide insights on stress to both interviewees and interviewers, it is necessary to first effectively measure stress. This work explores physiological stress detection through wearable sensing as a means of obtaining quantitative stress measures from young autistic adults undergoing a virtual simulated interview using supervised machine learning techniques. Several supervised learning models were explored and it was found that Elastic Net Regression had the best accuracy with individual models with an accuracy of 84.8% while Support Vector Regression models evaluated with leave-one-out cross validation had a group accuracy of 75.4%. The predictions from the stress model were used with data visualization techniques in order to provide insights on the interview process from both a group and individual viewpoint, showing that stress trends can be found and evaluated using the stress model. This work also addresses a major gap in physiological stress detection literature by presenting a novel dataset of physiological data and ground truth labels for 15 autistic young adults undergoing a simulated interview.