Skip to main content

Primitive neural stem cells in the adult mammalian brain give rise to GFAP-expressing neural stem cells.


AUTHORS

Sachewsky NNadia , Leeder R Rachel , Xu W Wenjun , Rose KL Keeley L , Yu F Fenggang , van der Kooy D Derek , Morshead CM Cindi M . Stem cell reports. 2014 6 3; 2(6). 810-24

ABSTRACT

Adult forebrain definitive neural stem cells (NSCs) comprise a subpopulation of GFAP-expressing subependymal cells that arise from embryonic fibroblast growth factor (FGF)-dependent NSCs that are first isolated from the developing brain at E8.5. Embryonic FGF-dependent NSCs are derived from leukemia inhibitory factor (LIF)-responsive, Oct4-expressing primitive NSCs (pNSCs) that are first isolated at E5.5. We report the presence of a rare population of pNCSs in the periventricular region of the adult forebrain. Adult-derived pNSCs (AdpNSCs) are GFAP(-), LIF-responsive stem cells that display pNSC properties, including Oct4 expression and the ability to integrate into the inner cell mass of blastocysts. AdpNSCs generate self-renewing, multipotent colonies that give rise to definitive GFAP(+) NSCs in vitro and repopulate the subependyma after the ablation of GFAP(+) NSCs in vivo. These data support the hypothesis that a rare population of pNSCs is present in the adult brain and is upstream of the GFAP(+) NSCs.


Adult forebrain definitive neural stem cells (NSCs) comprise a subpopulation of GFAP-expressing subependymal cells that arise from embryonic fibroblast growth factor (FGF)-dependent NSCs that are first isolated from the developing brain at E8.5. Embryonic FGF-dependent NSCs are derived from leukemia inhibitory factor (LIF)-responsive, Oct4-expressing primitive NSCs (pNSCs) that are first isolated at E5.5. We report the presence of a rare population of pNCSs in the periventricular region of the adult forebrain. Adult-derived pNSCs (AdpNSCs) are GFAP(-), LIF-responsive stem cells that display pNSC properties, including Oct4 expression and the ability to integrate into the inner cell mass of blastocysts. AdpNSCs generate self-renewing, multipotent colonies that give rise to definitive GFAP(+) NSCs in vitro and repopulate the subependyma after the ablation of GFAP(+) NSCs in vivo. These data support the hypothesis that a rare population of pNSCs is present in the adult brain and is upstream of the GFAP(+) NSCs.


Leave a Response

You must be logged in to post a comment