Skip to main content

Augmented cardiac formation of oxidatively-induced carbonylated proteins accompanies the increased functional severity of post-myocardial infarction heart failure in the setting of type 1 diabetes mellitus


AUTHORS

Dennis KEKathleen E , Hill SSalisha , Rose KLKristie L , Sampson UKUchechukwu K A , Hill MFMichael F . Cardiovascular pathology : the official journal of the Society for Cardiovascular Pathology. 2013 4 6; 22(6). 473-80

ABSTRACT

SUMMARY: Heart failure (HF) is a dominant cause for the higher mortality of diabetics after myocardial infarction (MI). In the present investigation, we have discovered that higher levels of oxidative stress (OS)-induced carbonylated proteins accompany worsening post-MI HF in the presence of type 1 diabetes. These findings provide a mechanistic link between amplified OS and exacerbation of post-infarction HF in diabetes.

BACKGROUND: Type 1 diabetes mellitus (DM) patients surviving myocardial infarction (MI) manifest an increased incidence of subsequent heart failure (HF). We have previously shown that after MI, type 1 DM is associated with accentuated myocardial oxidative stress (OS) and concomitant worsening of left ventricular (LV) function. However, the precise mechanisms whereby type 1 DM-enhanced OS adversely affects HF after MI remain obscure. As carbonylation of proteins is an irreversible post-translational modification induced only by OS that often leads to the loss of function, we analyzed protein-bound carbonyls in the surviving LV myocardium of MI and DM+MI rats in relation to residual LV function.

METHODS: Type 1 DM was induced in rats via administration of streptozotocin. Two weeks after induction of type 1 DM, MI was produced in DM and non-DM rats by coronary artery ligation. Residual LV function and remodeling was assessed at 4 weeks post-MI by echocardiography. Myocardial carbonylated proteins were detected through OxyBlot analysis, and identified by mass spectrometry.

RESULTS: Compared with MI rats, DM+MI rats exhibited significantly poorer residual LV systolic function and elevated wet to dry weight ratios of the lungs. Protein carbonyl content in cardiac tissue and isolated heart mitochondria of DM+MI rats was 20% and 48% higher, respectively, versus MI rats. Anti-oxidative enzymes and fatty acid utilization proteins were among the carbonylated protein candidates identified.

CONCLUSIONS: These findings implicate myocardial protein carbonylation as part of the molecular pathophysiology of aggravated HF in the type 1 diabetic post-infarction heart.