Skip to main content

Membrane binding of endocytic myosin-1s is inhibited by a class of ankyrin repeat proteins


AUTHORS

Willet AHAlaina H , Chen JSJun-Song , Ren LLiping , Gould KLKathleen L . Molecular biology of the cell. 2023 08 02; (). mbcE23060233

ABSTRACT

Myosin-1s are monomeric actin-based motors that function at membranes. Myo1 is the single myosin-1 isoform in that works redundantly with Wsp1-Vrp1 to activate the Arp2/3 complex for endocytosis. Here, we identified Ank1 as an uncharacterized cytoplasmic Myo1 binding partner. We found that in cells, Myo1 dramatically redistributed from endocytic patches to decorate the entire plasma membrane and endocytosis was defective. Biochemical analysis and structural predictions suggested that the Ank1 ankyrin repeats bind the Myo1 lever arm and the Ank1 acidic tail binds the Myo1 TH1 domain to prevent TH1-dependent Myo1 membrane binding. Indeed, Ank1 over-expression precluded Myo1 membrane localization and recombinant Ank1 blocked purified Myo1 liposome binding in vitro. Based on biochemical and cell biology analyses, we propose budding yeast Ank1 and human OSTF1 are functional Ank1 orthologs and that cytoplasmic sequestration by small ankyrin repeat proteins is a conserved mechanism regulating myosin-1s in endocytosis.