Skip to main content

Chemical Activation and Mechanical Sensitization of Piezo1 Enhance TRAIL-Mediated Apoptosis in Glioblastoma Cells


AUTHORS

Knoblauch SVSamantha V , Desai SHShanay H , Dombroski JAJenna A , Sarna NSNicole S , Hope JMJacob M , King MRMichael R . ACS omega. 2023 05 03; 8(19). 16975-16986

ABSTRACT

Glioblastoma multiforme (GBM), the most common and aggressive type of primary brain tumor, has a mean survival of less than 15 months after standard treatment. Treatment with the current standard of care, temozolomide (TMZ), may be ineffective if damaged tumor cells undergo DNA repair or acquire mutations that inactivate transcription factor p53. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) triggers apoptosis in multiple tumor types, while evading healthy cells, through a transcription-independent mechanism. GBM is particularly resistant to TRAIL, but studies have found that the mechanoreceptor Piezo1 can be activated under static conditions via Yoda1 agonist to induce TRAIL sensitization in other cancer cell lines. This study examines the effects and the mechanism of chemical and mechanical activation of Piezo1, via Yoda1 and fluid shear stress (FSS) stimulation, on TRAIL-mediated apoptosis in GBM cells. Here, we demonstrate that Yoda1 + TRAIL and FSS + TRAIL combination therapies significantly increase apoptosis in two GBM cell lines relative to controls. Further, cells known to be resistant to TMZ were found to have higher levels of Piezo1 expression and were more susceptible to TRAIL sensitization by Piezo1 activation. The combinatory Yoda1 + TRAIL treatment significantly decreased cell viability in TMZ-resistant GBM cells when compared to treatment with both low and high doses of TMZ. The results of this study suggest the potential of a highly specific and minimally invasive approach to overcome TMZ resistance in GBM by sensitizing cancer cells to TRAIL treatment via chemical or mechanical activation of Piezo1.