Skip to main content

Beyond the GTP-cap: Elucidating the molecular mechanisms of microtubule catastrophe


AUTHORS

Farmer VJVeronica J , Zanic MMarija . BioEssays : news and reviews in molecular, cellular and developmental biology. 2022 11 18; (). e2200081

ABSTRACT

Almost 40¬†years since the discovery of microtubule dynamic instability, the molecular mechanisms underlying microtubule dynamics remain an area of intense research interest. The “standard model” of microtubule dynamics implicates a “cap” of GTP-bound tubulin dimers at the growing microtubule end as the main determinant of microtubule stability. Loss of the GTP-cap leads to microtubule “catastrophe,” a switch-like transition from microtubule growth to shrinkage. However, recent studies, using biochemical in vitro reconstitution, cryo-EM, and computational modeling approaches, challenge the simple GTP-cap model. Instead, a new perspective on the mechanisms of microtubule dynamics is emerging. In this view, highly dynamic transitions between different structural conformations of the growing microtubule end – which may or may not be directly linked to the nucleotide content at the microtubule end – ultimately drive microtubule catastrophe.