Skip to main content

Analysis of small EV proteomes reveals unique functional protein networks regulated by VAP-A


AUTHORS

Barman BBahnisikha , Ramirez MMarisol , Dawson TRToni Renee , Liu QQi , Weaver AMAlissa M . Proteomics. 2023 11 05; (). e2300099

ABSTRACT

Extracellular vesicles (EVs) influence cell phenotypes and functions via protein, nucleic acid, and lipid cargoes. EVs are heterogeneous, due to diverse biogenesis mechanisms that remain poorly understood. Our previous study revealed that the endoplasmic reticulum (ER) membrane contact site (MCS) linker protein vesicle associated protein associated protein A (VAP-A) drives biogenesis of a subset of RNA-enriched EVs. Here, we examine the protein content of VAP-A-regulated EVs. Using label-free proteomics, we identified down- and upregulated proteins in small EVs (SEVs) purified from VAP-A knockdown (KD) colon cancer cells. Gene set enrichment analysis (GSEA) of the data revealed protein classes that are differentially sorted to SEVs dependent on VAP-A. Search Tool for the Retrieval of Reciprocity Genes (STRING) protein-protein interaction network analysis of the RNA-binding protein (RBP) gene set identified several RNA functional machineries that are downregulated in VAP-A KD SEVs, including ribosome, spliceosome, mRNA surveillance, and RNA transport proteins. We also observed downregulation of other functionally interacting protein networks, including cadherin-binding, unfolded protein binding, and ATP-dependent proteins.