Skip to main content

Micelle-in-Liposomes for Sustained Delivery of Anticancer Agents That Promote Potent TRAIL-Induced Cancer Cell Apoptosis


AUTHORS

Zhang ZZhenjiang , Patel SBSagar B , King MRMichael R . Molecules (Basel, Switzerland). 2020 12 31; 26(1).

ABSTRACT

Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) induces cancer cell-specific apoptosis and has garnered intense interest as a promising agent for cancer treatment. However, the development of TRAIL has been hampered in part because most human cancer cells are resistant to TRAIL. A few small molecules including natural compounds such as piperlongumine (PL) have been reported to sensitize cancer cells to TRAIL. We prepared a novel type of nanomaterial, micelle-in-liposomes (MILs) for solubilization and delivery of PL. PL-loaded MILs were used to sensitize cancer cells to TRAIL. As visualized by cryo-TEM, micelles were successfully loaded inside the aqueous core of liposomes. The MILs increased the water solubility of PL by ~20 fold. A sustained PL release from MILs in physiologically relevant buffer over 7 days was achieved, indicating that the liposomes prevented premature drug release from the micelles in the MILs. Also demonstrated is a potent synergistic apoptotic effect in cancer cells by PL MILs in conjunction with liposomal TRAIL. MILs provide a new formulation and delivery vehicle for hydrophobic anticancer agents, which can be used alone or in combination with TRAIL to promote cancer cell death.