
Research in the Iverson laboratory focuses on the basis for information encoding in proteins, which may 
manifest as molecular recognition and cellular communication. We use several model systems to understanding 
information encoding. 

 
Signaling in mammals. Cells use signal transduction to sense both external and internal stimuli. Much of 

eukaryotic signal transduction is mediated via membrane-spanning G protein coupled receptors (GPCRs). We 
are using visual signal transduction as a model system for GPCR signaling [1-10]. We have identified allosteric 
connections important for signal initiation [2,4-6] and termination [7-10].  

 

Our largest focus in the laboratory involves signaling 
mediators called arrestins (GM120569, DA043680). 
Arrestins were first discovered for their ability to bind 
active, phosphorylated GPCRs and suppress G protein-
mediated signaling [11]. Subsequent findings suggested 
that the receptor-bound form was in an activated state [12] 
and initiates a second, G protein-independent wave of 
signaling [13]. The conformations of free (basal [14-17]) 
and active [18-20] arrestins are quite different (Fig. 1). 
Nevertheless, major questions remain on how activated 
arrestins promote signaling.  

The non-visual arrestins (arrestin-2 and -3) can 
interact with >100 downstream proteins [21,22], with 
arrestin-3 uniquely able to scaffold effectors in both a 
receptor-dependent and a receptor-independent fashion 
[15,23-29]. These effector proteins include major 
regulators of cell fate, including mitogen activated protein 
(MAP) kinases and Src (short for sarcoma) family tyrosine 
kinases. It is thus perhaps not surprising that arrestin-
dependent signaling has been implicated in many central 
biological processes, such as organ development, cellular 
remodeling, apoptosis, and learning and memory. Inappropriate arrestin-dependent signaling may contribute to 
cardiac hypertrophy, parkinsonian dyskinesia, and drug addiction. Exciting recent findings have been in the 
determination of the structure of the activated form of arrestin-3 (Fig. 1). This created a new paradigm for 
arrestin-mediated signaling [30] that involves “arrestin switch regions”, regions of local conformation change as 
that are functionally analogous the switch regions of G proteins.  

In this context, a major question in the field is how arrestins direct signaling (called signaling bias). Or to put 
it another way, why do GPCR-bound arrestins promote signaling via the pro-proliferation extracellular receptor 
kinases (ERKs) and not the pro-apoptotic jun N-terminal kinases (JNKs)? Both of these are MAP kinases and 
have high sequence identity. One hypothesis in the field is termed the “barcode hypothesis” [31-33], which posits 
that different phosphorylation patterns of activated GPCR promote different conformations of bound arrestin. 
Each of those slightly different arrestin conformations then interacts with a different effector. Because arrestins 
are normally activated only when in complex with a GPCR, the barcode hypothesis has been difficult to validate 
experimentally as it would require that the arrestin structure is determined when coupled to receptors that have 
different phosphorylation patterns.  
 

Complex II. Complex II catalyzes the oxidation of succinate to fumarate during the citric acid cycle and passes 
the two electrons from this reaction to membrane-soluble quinones.  Members of the complex II family contain a 
soluble region consisting of two polypeptide chains (flavoprotein and iron protein), and a poorly-conserved 
membrane-spanning domain. Quinol-fumarate reductase (QFR) is a complex II homolog that catalyzes the 

 
Fig. 1. Arrestin activation. Overlay of the N-domain of 
IP6-activated arrestin-3 (blue) with the secondary 
structural elements of basal arrestin-3 (grey with a pink 
C-tail) highlights the interdomain rotation. Activating sites 
include the finger loop, with the active, a-helical 
conformation in magenta, and phosphate binding to the 
cleft that binds C-tail in the basal conformation. Activation 
induces previously undescribed conformational changes 
in the distal aSw regions (orange). We hypothesize that 
this is required for effector activation.  



reduction of fumarate to succinate during anaerobic respiration. I determined 
this structure (Fig. 2), and the architecture both suggests the mechanism of 
the terminal step of anaerobic fumarate respiration and gives a model for the 
function of the homologous complex II from mitochondria.  The complex exists 
as a modular enzyme with a linear arrangement of the electron transfer 
cofactors producing an obvious path between the membrane bound quinone 
and the active site FAD. My laboratory is using its 15-year expertise on QFR 
structure and biochemistry [34-43] to extend our knowledge of how 
bioenergetic proteins function. 

 We are currently performing several exploratory avenues of research 
(GM061606). The first is how this complicated respiratory protein is 
assembled, including how the cofactors are inserted. Recent studies have 
focused on the insertion of the flavin cofactor and the role of newly discovered 
assembly factors in this process [44-46]. The second avenue of research is 
how the E. coli QFR affects chemotaxis (Fig. 2; [34]) Both QFR and its 
metabolite fumarate are required for cellular locomotion, and QFR controls 
the onset of tumbling [47]. Our final avenue in this research is focused on the 
human enzyme, with the long-term goal of understanding how disease-
associated mutations affect the biochemical properties of the enzyme. The 
research on the human enzyme is in the early stages, and we remain focused 
on methods to express the properly assembled complex.  

 

Pathogen-host molecular recognition. Previous investigations in my 
laboratory focused on how the innate immune system recognizes outer 
membrane proteins [48-50]. However, our present investigations focus on the 
interaction between human platelets and the Serine Rich Repeat (SRR) 
adhesin family (AI106987). These proteins are required for 
the development of infective endocarditis, which is a life 
threatening infection associated with an in-hospital mortality 
rate of ~20%, and a 5-year mortality rate of ~40-70%, 
depending on the causative organism [51]. Indeed, despite 
prompt therapy, patients of streptococcal endocarditis have 
a poor prognosis: 50-60% of patients undergo heart failure 
[52] or progressive valve destruction [53], and ~15% of 
patients undergo systemic embolization and stroke [54]. 
Treatment for bacterial endocarditis commonly combines an 
antibiotic regimen with surgical intervention, with both 
having shortcomings. Our research investigates the basic 
mechanisms of bacterial attachment to the host [55-60]. 

 

Summary. Each of these research projects provides 
complementary information on how proteins encode 
information into their structures under very different 
biological settings. This information encoding helps 
bioenergetics proteins act as primordial signal scaffolds, 
allows mammalian signaling proteins to use conformations 
to select between possible outcomes, and allows hosts to 
recognize pathogens, and vice versa.  
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