Skip to main content

Nascent transcript and single-cell RNA-seq analysis defines the mechanism of action of the LSD1 inhibitor INCB059872 in myeloid leukemia


AUTHORS

Johnston G. , Ramsey H. , Liu Q. , Wang J. , Stengel K. R. , Sampathi S. , Arharya P. , Arrate M. , Stubbs M. C. , Burn T. , Savona M. R. , Hiebert S. W. . Gene. 2020 5 15; ().

ABSTRACT

Drugs targeting chromatin-modifying enzymes have entered clinical trials for myeloid malignancies, including INCB059872, a selective irreversible inhibitor of Lysine-Specific Demethylase 1 (LSD1). While initial studies of LSD1 inhibitors suggested these compounds may be used to induce differentiation of acute myeloid leukemia (AML), the mechanisms underlying this effect and dose-limiting toxicities are not well understood. Here, we used precision nuclear run-on sequencing (PRO-seq) and ChIP-seq in AML cell lines to probe for the earliest regulatory events associated with INCB059872 treatment. The changes in nascent transcription could be traced back to a loss of CoREST activity and activation of GFI1-regulated genes. INCB059872 is in phase I clinical trials, and we evaluated a pre-treatment bone marrow sample of a patient who showed a clinical response to INCB059872 while being treated with azacitidine. We used single-cell RNA-sequencing (scRNA-seq) to show that INCB059872 caused a shift in gene expression that was again associated with GFI1/GFI1B regulation. Finally, we treated mice with INCB059872 and performed scRNA-seq of lineage-negative bone marrow cells, which showed that INCB059872 triggered accumulation of megakaryocyte early progenitor cells with gene expression hallmarks of stem cells. Accumulation of these stem/progenitor cells may contribute to the thrombocytopenia observed in patients treated with LSD1 inhibitors.