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Sirens and Odysseus

Curious to hear the Sirens’ songs but mindful of the danger...

Figure: By John William Waterhouse (1891)
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Time Consistency
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Optimal Control and Dynamic Programming

Optimal control

Minimise J(u(·)) =
∫ T

0 f(t, x(t), u(t))dt+ h(x(T ))

subject to ẋ(t) = b(t, x(t), u(t)), x(0) = x0 ∈ Rn
(1)

Dynamic programming

A family of problems

Minimise J(s, y;u(·)) =
∫ T
s f(t, x(t), u(t))dt+ h(x(T ))

subject to ẋ(t) = b(t, x(t), u(t)), x(s) = y
(2)
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Bellman’s principle of optimality and HJB equation

Value function V (s, y) = infu(·) J(s, y;u(·))
Bellman’s principle of optimality (BPO)

V (s, y) = inf
u(·)|[s,s′]

[∫ s′

s

f(t, x(t), u(t))dt+ V (s′, x(s′))

]
, ∀0 ≤ s ≤ s′ ≤ T

V solves HJB (classical or viscosity)

−vt + sup
u
H(t, x, u,−vx) = 0, v(T, x) = h(x)

where Hamiltonian H(t, x, u, p) = p · b(t, x, u)− f(t, x, u)

Verification theorem

u∗(t, x) = argmaxuH(t, x, u,−vx(t, x))
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Time Consistency Illustrated

Time consistency (necessary condition of BPO): u∗(·) optimal on [s, T ]
with initial (s, y) =⇒ u∗(·)|[s′,T ] optimal on [s′, T ] with initial (s′, x∗(s′))
for s′ > s

x

ts
′

x∗(·)

x∗(s
′

)

s T

y

Figure: Time Consistency
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Optimal Control with Discounting

Change objective to

J(u(·)) =

∫ T

0
e−rtf(t, x(t), u(t))dt+ e−rTh(x(T ))

The (s, y) problem is

J(s, y;u(·)) =
∫ T
s e−r(t−s)f(t, x(t), u(t))dt+ e−r(T−s)h(x(T ))

= ers
[∫ T
s e−rtf(t, x(t), u(t))dt+ e−rTh(x(T ))

]
BPO

e−rsV (s, y) = inf
u(·)|[s,s′]

[∫ s′

s
e−rtf(t, x(t), u(t))dt+ e−rs

′
V (s′, x(s′))

]
So it is still time consistent

HJB and verification
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Exponential Discounting

ρ(t) = e−rt: exponential discounting

The only function satisfying ρ(t1)ρ(t2)−1 = ρ(t1 + s)ρ(t2 + s)−1

∀t1 > t2, s > 0: discount factor between t1 and t2 depends on t1 − t2
only

Stationarity axiom: Rate of discount is constant over time
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Stochastic Control

Minimise J(u(·)) = E
[∫ T

0 f(t, x(t), u(t))dt+ h(x(T ))
]

subject to dx(t) = b(t, x(t), u(t))dt+ σ(t, x(t), u(t))dW (t), x(0) = x0

Caution needed!

Stochastic BPO painstakingly established in Yong and Z. (1999)
primarily based on

A careful definition of “admissible (open-loop) control” (weak
formulation)
Tower rule of conditional expectation:
E[ξ|Fs] = E [E(ξ|F ′s)|Fs] , ∀s ≤ s′
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Stochastic BPO

Stochastic BPO

V (s, y) = inf
u(·)|[s,s′]

Es,y

[∫ s′

s

f(t, x(t), u(t))dt+ V (s′, x(s′))

]
, 0 ≤ s ≤ s′ ≤ T

where Es,y := E(·|x(s) = y)

Time consistency holds

HJB and verification
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Optimal Stopping

Minimise J(τ) = E[h(x(τ))]

subject to dx(t) = b(t, x(t), u(t))dt+ σ(t, x(t), u(t))dW (t), x(0) = x0

Time consistency holds

Variational inequalities
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Time Inconsistency
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Time Inconsistency

Let u∗ be a dynamic strategy (either open-loop or feedback)

Time inconsistency: u∗ is optimal at s, but no longer optimal at a
future time s′ > s and state x∗(s′) where x∗ is the state trajectory
under u∗

Examples

“I’ll leave the party after two beers”
“I’ll quit smoking tomorrow”
“How much money is enough? – Just a little bit more” (John
Rockefeller)
Regime change between (US) republican and democratic
administrations

There are far more time inconsistent problems than consistent ones
(Strotz 1956, Kydland and Prescott 1977)
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Examples of Time-Inconsistent Problems

Hyperbolic discounting/Decreasing impatience

Mean–variance portfolio choice

Probability weighting

Xunyu Zhou (Columbia) Time Inconsistency
November 9, 2018/UT San Antonio 16

/ 44



Examples of Time-Inconsistent Problems

Hyperbolic discounting/Decreasing impatience

Mean–variance portfolio choice

Probability weighting

Xunyu Zhou (Columbia) Time Inconsistency
November 9, 2018/UT San Antonio 16

/ 44



Examples of Time-Inconsistent Problems

Hyperbolic discounting/Decreasing impatience

Mean–variance portfolio choice

Probability weighting

Xunyu Zhou (Columbia) Time Inconsistency
November 9, 2018/UT San Antonio 16

/ 44



Decreasing Impatience

First decision: Choose between

A: get one apple today
B: get two apples tomorrow
“Some people may be tempted to select A” (Thaler 1991)

Second decision: Choose between

A: get one apple in one year
B: get two apples in one year plus one day
“No one would select A”

Decreasing Impatience (Prelec 1989, 2004, Thaler 1991, Laibson
1997): People are more impatient when they make near-term
decisions than when they make long-run ones (Strotz 1956)

Stationarity of time preference is violated

Present bias: we promise ourselves to be patient in the distant future,
but submit ourselves to the desire for instant pleasure
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Hyperbolic Discounting

ρ(t) = (1 + αt)−r/α, α > 0, r > 0 (Loewenstein and Prelec 1992,
Prelec 2004)

ρ(t) = e−
∫ t
0 r(s)ds where r(t) = r

1+αt

Instantaneous discount rate r(t) ↓ as t ↑
r(t) = − ρ̇(t)

ρ(t) ↓ as t ↑

r(t) ≡ r for ρ(t) = e−rt
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Optimal Control with Decreasing Impatience

Problem

Minimise J(u(·)) =
∫ T

0 ρ(t)f(t, x(t), u(t))dt+ ρ(T )h(x(T ))

subject to ẋ(t) = b(t, x(t), u(t)), x(0) = x0

where ρ(·) is a general discounting function

The (s, y) problem is

Minimise J(s, y;u(·)) =
∫ T
s ρ(t− s)f(t, x(t), u(t))dt + ρ(T − s)h(x(T ))

subject to ẋ(t) = b(t, x(t), u(t)), x(s) = y.

The costs now explicitly depend on time s: BPO fails!

Time inconsistent
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s ρ(t− s)f(t, x(t), u(t))dt + ρ(T − s)h(x(T ))

subject to ẋ(t) = b(t, x(t), u(t)), x(s) = y.

The costs now explicitly depend on time s: BPO fails!

Time inconsistent
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Continuous-Time Markowitz Problem

Problem

Maximize J(u(·)) = E[x(T )]− γ
2 Var(x(T ))

subject to dx(t) = [rx(t) + (µ− r)π(t)]dt+ σπ(t)dW (t), x(0) = x0

Var(X) = E[X2]− [EX]2

Tower rule fails for variance:
Var(X|Fs) 6= Var (Var(X|F ′s)|Fs) , s ≤ s′!
It fails for h(EX) where h is a general nonlinear function

A feature in mean-field control/game (Lasry and Lions 2007)

BPO fails!

Time inconsistent (Z. and Li 2000, Basak and Chabakauri 2010)
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Probability Weighting (Distortion)

First decision: Choose between

A: Win $50,000 with 0.01% chance
B: Win $5 with 100% chance
A was more popular (lottery)

Second decision: Choose between

A: Lose $50,000 with 0.01% chance
B: Lose $5 with 100% chance
This time: B was more popular (insurance)

Exaggeration of extremely small probabilities
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Probability Weighting - Yaari’s Dual Theory

Preference on random payoff X ≥ 0 represented by (Yaari 1987)

V (X) :=

∫ ∞
0

w(P(X > x))dx =

∫ ∞
0

xw′(1− FX(x))dFX(x)

where w : [0, 1]→ [0, 1], ↑, w(0) = 0, w(1) = 1 and FX is CDF of X

Overweighting both very good and very bad outcomes when w(·) is
inverse-S shaped

Choquet expectation: Ẽ[X] =
∫∞

0 w(P(X > x))dx - nonlinear
expectation
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Probability Weighting Function

Kahneman and Tversky (1992):

w(p) =
pδ

(pδ + (1− p)δ)
1
δ

,

0 ≤ δ ≤ 1.
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Figure: Inverse-S Shaped Probability Weighting Function (δ = 0.65, δ = 0.4)
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Stochastic Control under Probability Weighting

Minimize J(u(·)) = Ẽ
[∫ T

0 f(t, x(t), u(t))dt+ h(x(T ))
]

subject to dx(t) = b(t, x(t), u(t))dt+ σ(t, x(t), u(t))dW (t), x(0) = x0.

Need “tower rule of conditional Choquet expectation”

how to define “conditional Choquet expectation”?
tower rule not likely

No dynamic programming
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Time-Inconsistent Optimal Stopping

Optimal stopping with hyperbolic discounting (O’Donoghue and
Rabin 1999, Grenadier and Wang 2007, Ebert, Wei and Z. 2017)

Optimal stopping under probability weighting (Xu and Z. 2013, Ebert
and Strack 2015, Huang, Nguyen-Huu and Z. 2017)

Casino gambling models (Barberis 2012, He, Hu, Ob lój and Z. 2014,
2015)
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Who Are I: Intrapersonal Conflicts and Self Control

An individual’s preferences (tastes) do change

Changing preferences may depend on time t and state (of nature ω or
individual x)

An in-dividual is “dividual”: There are many different “selves”
residing within the individual, with each “self” representing her at a
different point in time

Intrapersonal conflicts and hence inconsistency occur when not all
preferences are aligned

Time inconsistency gives rise to self-control problem: Phelps and
Pollak (1968), O’Donoghue and Rabin (1999)
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Dealing with Time Inconsistency
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Three Types of Agents under Time Inconsistency

(Type 1) Näıve agent: One who is unaware of time inconsistency, and
changes strategies all the time (reoptimises at each time)

(Type 2) Sophisticated agent with commitment device
(pre-committed): One who is aware of time inconsistency, optimises
only once at t = 0, and commits to it in the future (either irrevocably
or by contriving a penalty for his future self should he misbehave)

(Type 3) Sophisticated agent without commitment device: One who is
aware of time inconsistency yet unable to commit himself, and selects
the present action “best” in the light of the future disobedience

Strotz (1956), Machina (1989), Barberis (2012), ...

Descriptive, rather than prescriptive

The three types are identical in a time-consistent problem
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(Type 1) Näıve agent: One who is unaware of time inconsistency, and
changes strategies all the time (reoptimises at each time)

(Type 2) Sophisticated agent with commitment device
(pre-committed): One who is aware of time inconsistency, optimises
only once at t = 0, and commits to it in the future (either irrevocably
or by contriving a penalty for his future self should he misbehave)

(Type 3) Sophisticated agent without commitment device: One who is
aware of time inconsistency yet unable to commit himself, and selects
the present action “best” in the light of the future disobedience

Strotz (1956), Machina (1989), Barberis (2012), ...

Descriptive, rather than prescriptive

The three types are identical in a time-consistent problem

Xunyu Zhou (Columbia) Time Inconsistency
November 9, 2018/UT San Antonio 28

/ 44



Three Types of Agents under Time Inconsistency
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Type 3 Agent: Subgame Perfect Equilibrium

Sophisticated agent without commitment device: aware of time
inconsistency yet unable to commit himself, and selects the present
action “best” in the light of the future disobedience

Backward induction: Subgame perfect equilibrium – Strotz (1956),
Pollak (1968), Peleg and Yaari (1973), Laibson (1997)

Resulting strategy is called an equilibrium: no “self” will be better off
by deviating from the equilibrium

Existence and uniqueness: extremely challenging problems!!!
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Idea Explained via Two-Period Model

Idea best explained in a two-period model
Objective is to maximise J(i,X2), i = 0, 1
Self 1 solves a one-period optimisation problem, with optimal strategy
π∗1 and optimal final state X∗2 = f(x1, ρ12)
Self 0 maximises J(0, f(X1, ρ12)) subject to budget constraint, to get
strategy π∗0
(π∗0, π

∗
1) is an equilibrium strategy

Figure: A Two-Period Model
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Extension to Continuous Time

Self s forms an alliance with all the sleves in [s, s+ ε] and lets ε→ 0

Given a control u∗, for any s ∈ [0, T ), ε > 0 and v ∈ L2
Fs(Ω; Rl),

define
us,ε,v(t) = u∗(t) + v1t∈[s,s+ε), t ∈ [s, T ].

Let u∗ be given and x∗ be the corresponding state process

Assuming the objective is to minimise, u∗ is called an equilibrium if

lim inf
ε↓0

J(s, x∗(s);us,ε,v)− J(s, x∗(s);u∗)

ε
≥ 0,

for any s ∈ [0, T ) and v ∈ L2
Fs(Ω; Rl)

Karp (2004), Ekeland and Lazrak (2006), Björk and Murgoci (2009),
Yong (2011), Hu, Jin and Z. (2012), Björk, Murgoci and Z. (2014)
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A Portfolio Choice Model with RDU Preference
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Rank-Dependent Utility Theory

Rank-dependent utility theory (RDUT): Quiggin (1982), Schmeidler
(1989)

Preference dictated by an RDUT pair (u,w)∫ +∞

0
w(P(u(X) > y))dy +

∫ 0

−∞
(w(P(u(X) > y))− 1) dy

Two components

A concave (outcome) utility function u: individuals dislike
mean-preserving spread
A (usually assumed) inverse-S shaped (probability) weighting function
w: individuals overweight tails
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A Portfolio Choice Model under Rank-Dependent Utility

Maximise J(s, y;π(·))
subject to dX(t) = π(t)>µ(t)dt+ π(t)>σ(t)dW (t), X(s) = y

where

J(s, y;π(·)) =

∫ +∞

0
w(s, Ps(u(X(T )) > y))dy +

∫ 0

−∞
(w(s, Ps(u(X(T )) > y))− 1)dy

with w(s, ·) being the probability weighting applied at time s, u(·) the
(outcome) utility function, and Ps the conditional probability given Fs,
which includes the information X(s) = y
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If There Is No Probability Weighting...

If w(s, p) ≡ p then the RDUT model reduces to the (time-consistent)
Merton problem

Define the deflator process

ρ(t)
4
= exp

(
−1

2

∫ t

0
|θ(s)|2ds−

∫ t

0
θ(s)>dW (s)

)
where θ(t) = σ(t)−1µ(t)

Then the optimal portfolio is the replicating portfolio of the claim

X(T ) = I(λρ(T ))

where I = (u′)−1

ρ(T ): pricing kernel or stochastic discounting factor or state price
density

Optimal terminal wealth is anti-comonotonic w.r.t. pricing kernel, if u
is concave

Important implications in asset pricing, market equilibria, etc.
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A Function, An ODE, and A Process

Define a function

h(t, x)
4
= E

[
w′p(t,N(ξ))exξ

]
, t ∈ [0, T ], x ∈ R,

where w′p(t, p) = ∂
∂pw(t, p), ξ is a standard normal random variable,

and N is CDF of ξ

Define an ODE Λ′(t) = −θ(t)2

(
h(t,
√

Λ(t))

h′(t,
√

Λ(t))

)2

Λ(t), t ∈ [0, T ),

Λ(T ) = 0

Define a process

ρ̄(t)
4
= exp

(
−1

2

∫ t

0
|λ(s)θ(s)|2ds−

∫ t

0
λ(s)θ(s)>dW (s)

)
where λ(t) :=

√
−Λ′(t)/|θ(t)|2 with Λ(·) being a positive solution of

the ODE
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Main Result

Theorem. (Hu, Jin and Z. 2016) Under some technical conditions, and
assume that the ODE admits a solution Λ(·) with Λ(t) > 0 ∀t ∈ [0, T ),
and that the following inequality holds for any c ∈ R:

∫ +∞

−∞
w
′
p

(
t, N

(
c− g(x)√

Λ(t)

))
N
′
(
c− g(x)√

Λ(t)

)(
g
′′
(x) +

c− g(x)

Λ(t)
g
′
(x)

2

)
du(x) ≥ 0, a.e.t ∈ [0, T )

where g(x) = − lnu′(x). Then the portfolio replicating the terminal
wealth

X(T ) = I
(
e

1
2

Λ(0)ρ̄(T )
)

is an equilibrium strategy.
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Financial Implications

The “desired” final wealth is of the same form as in the classical
Merton case

... except one needs to modify the market price of risk process from
θ(·) to λ(·)θ(·)
This is because at each time t, the objective is no longer to achieve
the instantaneous optimality; rather it is to achieve an instantaneous
equilibrium with all the future “selves”

The final wealth is anti-comonotonic with ρ̄(T )

Asset pricing implication: the pricing kernel should probably be ρ̄(T )?
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Idea of Proof

Ansatz: final wealth of an equlibrium strategy is X(T ) = I (µρ̄(T ))
where µ is the Lagrange multiplier

µ and λ(·) are to be determined via the equilibrium condition

Let π(·) be equilibrium with the corresponding wealth process X(·)
starting from X(0) = x0, and a time t ∈ [0, T ], define a perturbed
strategy πt,ε,k(·) which adds k on top of π(·) over the time interval
[t, t+ ε) and keeps the original portfolio outside of this interval,
where k is an Ft-measurable random vector

Definition of equilibrium strategy:

lim sup
ε↓0

J(t,X(t);πt,ε,k)− J(t,X(t);π)

ε
≤ 0 ∀(t, k)
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Idea of Proof (Cont’d)

After an enormous amount of calculations, we deduce

lim supε↓0
J(t,X(t);πt,ε,k)−J(t,X(t);π)

ε

≤ −|σ(t)>k|2 1
2
√

Λ(t)

∫∞
−∞ w′p(t, N(Y (0)))N′(Y (0))

(
g′′(m(0)) + g′(m(0))2

Y (0)√
Λ(t)

)
dy

+θ(t)>σ(t)>k 1√
Λ(t)

∫∞
−∞ w′p(t, N(Y (0)))N′(Y (0))g′(m(0))

(
1− Y (0)√

Λ(t)
λ(t)

)
dy

By definition, π(·) is an equilibrium if the right hand side of the above
is non-posisitve for any k ∈ Rn

However, the right hand side is quadratic in k ...

... hence we have an equality which is the ODE, and an inequality
which is the condition in the theorem
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Recent Works on Continuous-Time Equilibria

Deterministic consumption with non-exponential discounting (Ekeland
and Lazrak 2006)

Merton problem with non-exponential discounting (Ekeland and Pirvu
2008)

Stochastic consumption/investment with decreasing impatience (Wei
and Z. 2015)

General time-inconsistent stochastic control (Björk and Murgoci
2009, Yong 2012)

Continuous-time Markowitz problem (Björk, Murgoci and Z. 2014,
Dai, Jin, Kou and Xu 2017)

Optimal stopping with decreasing impatience (Huang and
Nguyen-Huu 2016, Ebert, Wei and Z. 2017)

Rank-dependent utility maximisation (Hu, Jin and Z. 2017)

Optimal stopping under probability weighting (Huang, Nguyen-Huu
and Z. 2017)
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Epilogue:

Rules Rather Than Discretion
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Rules, Discretion, and Compromises

Making decisions with discretion: selecting a course of action once a
situation occurs

Enacting rules: mandating a predefined plan catering for many
situations

“... policymakers should follow rules rather than have discretion”
(Kydland and Prescott 1977)

Compromises: “economic planning is not a game against nature but,
rather, a game against rational economic agents” (Kydland and
Prescott 1977)

Devices sometimes needed to enforce the rules (i.e. to constrain and
guide the narrating self)

Cash only shopping
Turn off iphone before sleeping
Algo trading
Odysseus: got himself bound to the mast
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New Research Opportunities

Time-inconsistency: largely unexplored in control and mathematical
finance

New opportunities begging for innovation research
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