Resilience of water systems in wake of disruptions

Lina Sela
Dept. of Civil, Architectural \& Environmental Engineering, UT Austin

The Bad News

©N The New Hork ©imes
 USA TODAY

Water crisis in Flint, Mich., federal state of emergency January, 2016

LEAD LEVEL COMPARISONS
Water contamination in Flint, Mich., compared with that of Detroit - Flint's original source for purified water.

90th percentile ${ }^{1}$ levels of lead exposure (in parts per billion):

Los Angeles Times

L.A.'s aging water pipes;
a \$1-billion dilemma
February, 2015

The Bad News

2017 Infrastructure Grades

＋AVIATION	D
4．bridges	C＋
E．Dams	D
（7）drinking water	D
9 energy	D＋
［．HaZARdous Waste	T D＋
（3）InLand watterwars	T D
Amis levees	个 1

－ports	¢ $6+$
（A）Rall	个 B
（1il）Roads	D
tims schools	个 D＋
－sold waste	\downarrow 6＋
（－）transit	－D－
4．Wastewater	个 D＋

America＇s
Cumulative Infrastructure

A	EXCEPTIONAL
B	GOOD
C	MEDIOCRE
D	POOR
F	FAILING

The Good News: Smart Cities

The Good News: Smart Homes

Infrastructure systems

Reduce:

- Water loss
- Water quality
- Energy requirements
- Infrastructure failures
- Supply interruptions

Sensor placement

Objective

- Sensor placement for detection and location identification of failures

Approach

1. Influence model

- Network and sensing models

2. Combinatorial optimization

- The minimum test cover (MTC) problem
- Augmented greedy solution algorithm
- L. Sela and S. Amin. ""Robust sensor placement for pipeline monitoring: Mixed integer and greedy optimization." Advanced Engineering Informatics, 2018.
- L. Sela, W. Abbas, X. Koutsoukos, and S. Amin. "Minimum test cover approach for fault location identification in flow networks." Automatica, 2016.
- W. Abbas, L. Sela, X. Koutsoukos, and S. Amin. "An efficient approach to fault identification in urban water networks using multi-level sensing." ACM BuildSys 2015.

Influence model

Sensing:

$\mathcal{L}=\left\{\ell_{1}, \ldots, \ell_{n}\right\}-$ set of n failure events
$\mathcal{S}=\left\{S_{1}, \ldots, S_{m}\right\}$ - set of m sensor locations

Detection:

$$
y_{s_{i}}\left(t, \ell_{j}\right)= \begin{cases}1 & \text { if } \xi\left(p_{i, t}-\hat{p}_{i, t}\right) \geq \varepsilon \\ 0 & \text { otherwise }\end{cases}
$$

Fault signature:
$\mathbf{y}_{s_{i}}\left(\ell_{j}\right)= \begin{cases}1 & \text { if } y_{s_{i}}\left(t, \ell_{j}\right)=1, \\ 0 & \text { otherwise } .\end{cases}$
Fault matrix:

$$
\mathcal{M}(\mathcal{L}, \mathcal{S})=\left[\begin{array}{c}
\mathbf{y}_{\mathcal{S}}\left(\ell_{1}\right) \\
\mathbf{y}_{\mathcal{S}}\left(\ell_{2}\right) \\
\vdots \\
\mathbf{y}_{\mathcal{S}}\left(\ell_{n}\right)
\end{array}\right]
$$

Influence model

Example:

$$
\mathcal{M}(\mathcal{L}, \mathcal{S})=\begin{gathered}
\\
\ell_{1} \\
\ell_{2} \\
\ell_{3} \\
\ell_{4} \\
\ell_{5} \\
\ell_{6} \\
\ell_{7} \\
\ell_{8} \\
\ell_{9} \\
\ell_{10}
\end{gathered}\left(\begin{array}{cccccccc}
S_{1} & S_{2} & S_{3} & S_{4} & S_{5} & S_{6} & S_{7} & S_{8} \\
1 & 1 & 1 & 0 & 1 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 & 0 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 & 1 & 0 & 0 & 1 \\
1 & 0 & 1 & 1 & 1 & 1 & 1 & 0 \\
0 & 1 & 1 & 1 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 \\
0 & 1 & 0 & 1 & 1 & 0 & 1 & 1 \\
0 & 0 & 1 & 1 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 1 & 1 & 1 & 1 & 1
\end{array}\right)
$$

Detection as MSC

Detection

The detection problem is to select the minimum number of sensors $S \subseteq \mathcal{S}$, such that when a detectable event occurs, at least one sensor in S detects the event.

Minimum set cover (MSC)

Let \mathcal{L} be a finite set of elements, and $\mathcal{C}=\left\{C_{i}: C_{i} \subseteq \mathcal{L}\right\}$ be the collection of given subsets of \mathcal{L}. The minimum set cover is to find $\mathcal{C}_{s} \subseteq \mathcal{C}$ with the minimum cardinality such that $\bigcup_{C_{i} \in \mathcal{C}} C_{i}=\bigcup_{C_{j} \in \mathcal{C}_{s}} C_{j}$.

Proposition

The detection problem is equivalent to the MSC problem where $f_{D}\left(\mathcal{C}_{S}\right)=\left|\bigcup_{C_{i} \in \mathcal{C}_{S}} C_{i}\right|$ is the detection function, $C_{i} \subseteq \mathcal{L}$ is the set of link
failure events detected by the sensor S_{i}, i.e., $C_{i}=\left\{\ell_{j} \in \mathcal{L} \mid \mathbf{y}_{s_{i}}\left(\ell_{j}\right)=1\right\}$.

Solving the MSC

The greedy approach

- In each iteration select:
(a) Select $C_{i^{*}} \in \mathcal{C}$ covering the most uncovered elements in \mathcal{L}.
(b) Add to current set $\mathcal{C}^{*} \leftarrow \mathcal{C}^{*} \cup\left\{C_{i^{*}}\right\}$.
(c) Repeat until all elements in \mathcal{L} are covered or no new element can be covered by any $C_{i} \in \mathcal{C}$.
- Best approximation ratio of $\mathcal{O}(\ln n)$.
- Running times $\mathcal{O}(m n)$. Can be made faster by reducing the number of function evaluations exploiting the submodularity property. Lazy greedy (Krause et al 2008)

Solving the MSC

The greedy approach

- In each iteration select:
(a) Select $C_{i^{*}} \in \mathcal{C}$ covering the most uncovered elements in \mathcal{L}.
(b) Add to current set $\mathcal{C}^{*} \leftarrow \mathcal{C}^{*} \cup\left\{C_{i^{*}}\right\}$.
(c) Repeat until all elements in \mathcal{L} are covered or no new element can be covered by any $C_{i} \in \mathcal{C}$.
- Best approximation ratio of $\mathcal{O}(\ln n)$.
- Running times $\mathcal{O}(m n)$. Can be made faster by reducing the number of function evaluations exploiting the submodularity property. Lazy greedy (Krause et al 2008).

Identification as MTC

Identification

The identification problem is to select the minimum number of sensors $S \subseteq \mathcal{S}$ that uniquely detect the events in \mathcal{L}.
Pair-wise event $\left\{\ell_{i}, \ell_{j}\right\}$ is detectable, if there exists a sensor that gives different outputs for ℓ_{i} and $\ell_{j}, \exists S_{p} \in \mathcal{S}: \mathbf{y}_{s_{p}}\left(\ell_{i}\right) \neq \mathbf{y}_{s_{p}}\left(\ell_{j}\right)$.

Minimum test cover (MTC)

The MTC is to find $\mathcal{C}_{t} \subseteq \mathcal{C}$ with the minimum cardinality such that if for a pair of elements $\left\{\ell_{u}, \ell_{v}\right\} \in \mathcal{L}$, there exists $C_{i} \in \mathcal{C}$ that contains either ℓ_{U} or ℓ_{v} but not both, then there exists some $C_{j} \in \mathcal{C}_{t}$ that also contains either ℓ_{u} or ℓ_{v}, but not both.

Proposition

The problem of identification of link failures in networks is equivalent to the MTC problem.

Example cont.:

Detection: $\left\{S_{2}, S_{4}\right\}$

$$
\left(\begin{array}{llllllll}
1 & 1 & 1 & 0 & 1 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 & 0 & 1 & 0 & 0 \\
1 & 1 & 0 & 1 & 1 & 0 & 0 & 1 \\
1 & 0 & 1 & 1 & 1 & 1 & 1 & 0 \\
1 & 0 & 1 & 1 & 0 & 1 & 1 & 0 \\
0 & 1 & 1 & 1 & 1 & 0 & 1 & 1 \\
0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 \\
0 & 1 & 0 & 1 & 1 & 0 & 1 & 1 \\
0 & 0 & 1 & 1 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 1 & 1 & 1 & 1 & 1
\end{array}\right)
$$

- All events are detected
- Only three unique sensor outputs

Identification: $\left\{S_{1}, S_{2}, S_{3}, S_{5}\right\}$

$$
\left(\begin{array}{llllllll}
1 & 1 & 1 & 0 & 1 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 & 0 & 1 & 0 & 0 \\
1 & 1 & 0 & 1 & 1 & 0 & 0 & 1 \\
1 & 0 & 1 & 1 & 1 & 1 & 1 & 0 \\
1 & 0 & 1 & 1 & 0 & 1 & 1 & 0 \\
0 & 1 & 1 & 1 & 1 & 0 & 1 & 1 \\
0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 \\
0 & 1 & 0 & 1 & 1 & 0 & 1 & 1 \\
0 & 0 & 1 & 1 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 1 & 1 & 1 & 1 & 1
\end{array}\right)
$$

- All events are detected
- All events are uniquely identified

Solving the MTC

Greedy solution

1. Input: $\mathcal{C}=\left\{C_{1}, \cdots, C_{m}\right\}, C_{i} \subseteq \mathcal{L}$.

Transform: the MTC to the equivalent MSC

Solve: using greedy algorithm

Select $C_{i^{*}}^{t} \in \mathcal{C}^{t}$ covering the most uncovered elements in \mathcal{C}^{t}
Add to current set $\mathcal{C}^{*} \leftarrow \mathcal{C}^{*} \cup\left\{C_{i *}\right\}$
Repeat until all elements in \mathcal{L}^{t} are covered or no new element in \mathcal{L}^{t} can be covered by any $C_{i}^{t} \in \mathcal{C}^{t}$.

Solving the MTC

Greedy solution

1. Input: $\mathcal{C}=\left\{C_{1}, \cdots, C_{m}\right\}, C_{i} \subseteq \mathcal{L}$.
2. Transform: the MTC to the equivalent MSC

- Create a new set of events: $\mathcal{L}^{t}=\left\{\ell_{12}^{t}, \cdots, \ell_{(n-1) n}^{t}\right\}$. For each unordered pair $\left\{\ell_{i}, \ell_{j}\right\}$, define a new element $\ell_{i j}^{t}$.
- Create a new sets of sensors' outputs: $\mathcal{C}^{t}=\left\{C_{1}^{t}, \cdots, C_{m}^{t}\right\}$, where $C_{v}^{t}=\left\{\ell_{i j}^{t}:\left|\left\{\ell_{i}, \ell_{j}\right\} \cap C_{v}\right|=1\right\}, \forall k \in\{1, \cdots, m\}$.
Solve: using greedy algorithm
(a) Select $\mathcal{C}_{i^{*}}^{t} \in \mathcal{C}^{t}$ covering the most uncovered elements in \mathcal{L}^{t}.
(b) Add to current set $\mathcal{C}^{*} \leftarrow \mathcal{C}^{*} \cup\left\{C_{i^{*}}\right\}$.
(c) Repeat until all elements in \mathcal{L}^{t} are covered or no new element in \mathcal{L}^{t} can

4. Output:

Solving the MTC

Greedy solution

1. Input: $\mathcal{C}=\left\{C_{1}, \cdots, C_{m}\right\}, C_{i} \subseteq \mathcal{L}$.
2. Transform: the MTC to the equivalent MSC

- Create a new set of events: $\mathcal{L}^{t}=\left\{\ell_{12}^{t}, \cdots, \ell_{(n-1) n}^{t}\right\}$. For each unordered pair $\left\{\ell_{i}, \ell_{j}\right\}$, define a new element $\ell_{i j}^{t}$.
- Create a new sets of sensors' outputs: $\mathcal{C}^{t}=\left\{C_{1}^{t}, \cdots, C_{m}^{t}\right\}$, where $C_{v}^{t}=\left\{\ell_{i j}^{t}:\left|\left\{\ell_{i}, \ell_{j}\right\} \cap C_{v}\right|=1\right\}, \forall k \in\{1, \cdots, m\}$.

3. Solve: using greedy algorithm
(a) Select $C_{i^{*}}^{t} \in \mathcal{C}^{t}$ covering the most uncovered elements in \mathcal{L}^{t}.
(b) Add to current set $\mathcal{C}^{*} \leftarrow \mathcal{C}^{*} \cup\left\{C_{i^{*}}\right\}$.
(c) Repeat until all elements in \mathcal{L}^{t} are covered or no new element in \mathcal{L}^{t} can be covered by any $C_{i}^{t} \in \mathcal{C}^{t}$.

Solving the MTC

Greedy solution

1. Input: $\mathcal{C}=\left\{C_{1}, \cdots, C_{m}\right\}, C_{i} \subseteq \mathcal{L}$.
2. Transform: the MTC to the equivalent MSC

- Create a new set of events: $\mathcal{L}^{t}=\left\{\ell_{12}^{t}, \cdots, \ell_{(n-1) n}^{t}\right\}$. For each unordered pair $\left\{\ell_{i}, \ell_{j}\right\}$, define a new element $\ell_{i j}^{t}$.
- Create a new sets of sensors' outputs: $\mathcal{C}^{t}=\left\{C_{1}^{t}, \cdots, C_{m}^{t}\right\}$, where $C_{v}^{t}=\left\{\ell_{i j}^{t}:\left|\left\{\ell_{i}, \ell_{j}\right\} \cap C_{v}\right|=1\right\}, \forall k \in\{1, \cdots, m\}$.

3. Solve: using greedy algorithm
(a) Select $C_{i^{*}}^{t} \in \mathcal{C}^{t}$ covering the most uncovered elements in \mathcal{L}^{t}.
(b) Add to current set $\mathcal{C}^{*} \leftarrow \mathcal{C}^{*} \cup\left\{C_{i^{*}}\right\}$.
(c) Repeat until all elements in \mathcal{L}^{t} are covered or no new element in \mathcal{L}^{t} can be covered by any $C_{i}^{t} \in \mathcal{C}^{t}$.
4. Output: MTC, $\mathcal{C}^{*} \subseteq \mathcal{C}$.

Example cont.

MTC to MSC

Sensors

Pair-wise events $\left(\begin{array}{l}\binom{n}{2} \\ \hline\end{array}\right.$

$\left.\begin{array}{c} \\ \ell_{1} \\ \ell_{2} \\ \ell_{3} \\ \ell_{4} \\ \ell_{5} \\ \ell_{6} \\ \ell_{7} \\ \ell_{8} \\ \ell_{9} \\ \ell_{10}\end{array} \quad \begin{array}{cccccccc}S_{1} & S_{2} & S_{3} & S_{4} & S_{5} & S_{6} & S_{7} & S_{8} \\ 1 & 1 & 1 & 0 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 1 & 1 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1 & 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1\end{array}\right)$

Example cont.

MTC to MSC

$\left.\begin{array}{c} \\ \ell_{1} \\ \ell_{2} \\ \ell_{3} \\ \ell_{4} \\ \ell_{5} \\ \ell_{6} \\ \ell_{7} \\ \ell_{8} \\ \ell_{9} \\ \ell_{10}\end{array} \quad \begin{array}{cccccccc}S_{1} & S_{2} & S_{3} & S_{4} & S_{5} & S_{6} & S_{7} & S_{8} \\ 1 & 1 & 1 & 0 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 1 & 1 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1 & 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1\end{array}\right)$

Example cont.

MTC to MSC

$\left.\begin{array}{c} \\ \ell_{1} \\ \ell_{2} \\ \ell_{3} \\ \ell_{4} \\ \ell_{5} \\ \ell_{6} \\ \ell_{7} \\ \ell_{8} \\ \ell_{9} \\ \ell_{10}\end{array} \quad \begin{array}{cccccccc}S_{1} & S_{2} & S_{3} & S_{4} & S_{5} & S_{6} & S_{7} & S_{8} \\ 1 & 1 & 1 & 0 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 1 & 1 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1 & 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1\end{array}\right)$

Example cont.

MTC to MSC

Sensors
Pair-wise events

- Equivalent MSC
l
ℓ_{1}, ℓ_{2}
ℓ_{1}, ℓ_{3}
ℓ_{1}, ℓ_{4}
\vdots
ℓ_{1}, ℓ_{10}
ℓ_{2}, ℓ_{3}
ℓ_{2}, ℓ_{4}
\vdots
$\ell_{9}, \ell_{10}$$\left(\begin{array}{cccccccc}S_{1} & S_{2} & S_{3} & S_{4} & S_{5} & S_{6} & S_{7} & S_{8} \\ 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 & 0 \\ 0 & \vdots \\ 0 & 1 & 1 & 1 & 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\ 0 & \vdots \\ 0 & 1 & 0 & 1 & 0 & 0 & 0\end{array}\right)$
- Solve using the greedy algorithm:

$$
f_{l}\left(\mathcal{C}_{S}\right)=f_{D}\left(\mathcal{C}_{S}^{t}\right)
$$

Augmented greedy MTC solution

Transformed greedy solution

- Memory needed to transform MTC to the MSC in GB: $\binom{n}{2} \times m \times 10^{-9}$
- $m=1000 ; n=1000 ; \sim 0.5 G B$
- $m=2000 ; n=2000 ; \sim 4 G B$
- $m=10000 ; n=10000 ; \sim 500 G B$

Augmented greedy solution

- Avoid the complete transformation of the MTC to the MSC

Augmented greedy MTC solution

Transformed greedy solution

- Memory needed to transform MTC to the MSC in GB: $\binom{n}{2} \times m \times 10^{-9}$
- $m=1000 ; n=1000 ; \sim 0.5 G B$
- $m=2000 ; n=2000 ; \sim 4 G B$
- $m=10000 ; n=10000 ; \sim 500 G B$

Augmented greedy solution

- Avoid the complete transformation of the MTC to the MSC.

Augmented greedy MTC solution

Main idea

- A sensor i that detects k events (i.e., $\left|C_{i}\right|=k$) can distinguish between k detected events and ($n-k$) undetected events, i.e. it detects $k(n-k)$ pair-wise events (i.e., $\left|C_{i}^{t}\right|=k(n-k)$).
- Let $\mathcal{C}^{*} \subseteq \mathcal{C}$ be the (test) cover until the current iteration, and $\mathcal{C}_{\text {cov }}$ be the set of link failures detected by the sensors that are included in the (test) cover, i.e., $\mathcal{C}_{\text {cov }}=\bigcup_{C_{u} \in C^{*}} C_{u}$.
- The utility of adding C_{i} to C^{*} in each iteration is based on:
(i) x_{i} - how many pair-wise events corresponding to undetected events, i.e., not in $\mathcal{C}_{\text {cov }}$ can be detected by C_{i} ?
(ii) y_{i} - how many undetected pair-wise events corresponding to detected events, i.e, in $\mathcal{C}_{\text {cov }}$ can be detected by C_{i} ?

Main algorithm

```
1: Input: \(\mathcal{C}=\left\{C_{1}, \cdots, C_{m}\right\}, C_{i} \subseteq \mathcal{L}\)
2: Output: \(\operatorname{MTC}: \mathcal{C}^{*} \subseteq \mathcal{C}\)
    3: Initialization: \(\mathcal{C}_{c o v}=\emptyset ; \mathcal{C}^{*}=\emptyset ; \quad G_{0}=\emptyset ; j=1 ; \quad n=|\mathcal{L}| ; \quad w_{i^{*}}=1\);
    4: while \(w_{i} *>0\) do
    5: \(\quad n_{j} \leftarrow n-\left|\mathcal{C}_{\text {cov }}\right|\)
6: for all \(i\) do
    7: \(\quad X_{i} \leftarrow\left(C_{i} \backslash \mathcal{C}_{\text {cov }}\right) ; k_{i, j} \leftarrow\left|X_{i}\right|\)
8: \(\quad x_{i} \leftarrow k_{i, j}\left(n_{j}-k_{i, j}\right)\)
9: \(\quad Y_{i} \leftarrow C_{i} \cap \mathcal{C}_{\text {cov }}\)
10: \(\quad y_{i} \leftarrow \sum_{t=0}^{j-1}\left|\alpha\left(Y_{i}, G_{t}\right)\right|\)
11 :
12: \(\quad w_{i^{*}} \leftarrow \max w_{i}\)
13: if \(w_{i^{*}}>0\) then
14: \(\quad \mathcal{C}^{*} \leftarrow \mathcal{C}^{*} \cup\left\{C_{i^{*}}\right\}\)
15: \(\quad \mathcal{C}_{\text {cov }} \leftarrow \mathcal{C}_{\text {cov }} \cup C_{i^{*}}\)
16: \(\quad G_{j} \leftarrow \beta\left(X_{i^{*}}\right)\)
17: \(\quad\) for \(t=0\) to \(j-1\) do
18: \(\quad G_{t} \leftarrow G_{t} \backslash \alpha\left(Y_{i^{*}}, G_{t}\right)\)
    end for
19: \(\underset{\text { end }}{j} \underset{\text { eff }}{ } \leftarrow j+1\)
    end while
```


Example cont.

Initialization:

$$
\mathcal{C}_{\text {cov }}=\emptyset ; \mathcal{C}^{*}=\emptyset ; G_{0}=\emptyset ; n=10 ;
$$

Events

Example cont.

Iteration 1:

$$
\begin{aligned}
& x_{i}=k_{i, 1}\left(n-k_{i, 1}\right) ; \\
& x_{1}=5(10-5)=25 ; \\
& y_{i}=0 ; w_{i}=x_{i}+y_{i} ;
\end{aligned}
$$

Example cont.

Iteration 1:

Example cont.

End of Iteration 1:

$$
\mathcal{C}_{c o v}=\{1,2,3,4,5\} ; n=5 ;
$$

$$
G_{1}=\{\{1,2\},\{1,3\}, \cdots,\{4,5\}\} ;
$$

Application example:

Net9@KY

- Daily supply $\sim 1.5 \mathrm{M}\left[\frac{\mathrm{gal}}{\mathrm{day}}\right] ; 260[\mathrm{~km}]$ pipe length;
- > 950 junctions; > 1100 pipes;

Adopted from Jolly et al 2014

Net9@KY cont.

MTC vs. MSC

Net9@KY cont.

Simulations

Computations

Network	No. of sensors	No. of pipes	TLG $[\mathrm{min}]$	AG $[\mathrm{min}]$
Net1	48	168	0.23	0.08
Net2	98	366	2.39	0.58
Net3	134	496	6.93	1.65
Net4	138	603	11.98	4.93
Net5	164	644	15.58	3.85
Net6	258	907	45.46	6.31
Net7	139	940	49.12	9.31
Net8	195	1124	80.55	28.07
Net9	359	1156	91.57	11.06
Net10	408	1614	257.41	39.48
Net11	712	3032	-	50.53
Net12	1001	14822	-	1800.08

TLG - transformed lazy greedy; AG - augmented greedy;

- $\mathrm{AG}-\mathcal{O}\left(\sum_{i}^{m_{j}}\binom{k_{i}}{2}\right)$
- $\sum_{i}\binom{k_{i}}{2} \leq \frac{k}{n}\binom{n}{2}$

