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Multimodal Event Detection Problem

Surveillance

Infrastructure monitoring

Environmental and
natural disaster
monitoring

Crime hotspot detection
for law enforcement

Real-time traffic
monitoring

I How to combine or fuse information from multiple modalities (CCTV
images, Twitter, Instagram) for real-time event detection?

I What statistical models to use and algorithms to employ (optimality)?

I We take a data driven approach



Multimodal Data from a New York City Event

Tunnel2Towers 5K run
or walk

CCTV data using
511ny.org

Instagram data using
picodash.com

Twitter data using
Twython

I Datasets collected around a 5K run that occurred in New York City
on Sunday, September 24th, 2017

I Data also collected on two Sundays before and one Sunday after



Traffic Camera Imagery from Camera on Race Path

Camera:	NYSDOT	– 4616693	(On	Race	Path)

09/17/2017	(1	week	before	the	race)

I Camera ON race path one week before



Traffic Camera Imagery from Camera on Race Path

Camera:	NYSDOT	– 4616693	(On	Race	Path)

09/24/2017	(Day	of	the	race)

I Camera ON race path on event day

I Increase in number of persons from a week before



Traffic Camera Imagery from Camera off Race Path

Camera:	NYSDOT	– 4616505	(Off	Race	Path)

09/17/2017	(1	week	before	the	race)

I Camera OFF race path one week before



Traffic Camera Imagery from Camera off Race Path

Camera:	NYSDOT	– 4616505	(Off	Race	Path)

09/24/2017	(Day	of	the	race)

I Camera OFF race path on event day

I No significant change in number of persons



Instagram Posts from Camera on Race Path

09/24/2017	(Day	of	the	race):	295	posts	in	5.5	hrs

Rectangular	block	around	NYSDOT	– 4616693	(On	Race	Path)

I Instagrams posts near an on path camera on event day



Instagram Posts from Camera off Race Path

09/17/2017	(1	week	before	the	race):	34	posts	in	5.5	hrs

Rectangular	block	around	NYSDOT	– 4616505	(Off	Race	Path)

I Instagrams posts near an off path camera one week before



Instagram Posts from Camera off Race Path

09/24/2017	(Day	of	the	race):	
38	posts	in	5.5	hrs

Rectangular	block	around	NYSDOT	– 4616505	(Off	Race	Path)

I Instagrams posts near an off path camera on event day



Extracting Counts from Multimodal Data

Average Person Counts

I Person counts extracted from CCTV images using convolution neural
network-based object detector

I Clear increase in average count on event day for on path camera



Extracting Counts from Multimodal Data

Average Vehicle Counts Average Instagram Counts

I Decrease in average vehicle counts and increase in average Instagram
counts



Anomaly Detection Using Counts and Sub-Events

I Insights obtained using data analysis
1 Multiple modalities mapped to counts: Count of sub-events can be

exploited for event detection detector (also used in credit card security)
2 Nonstationarity: Data is nonstationary in nature
3 Cyclostationarity: Data has regular or periodic patterns

I Statistical problems
1 How to detect changes in levels of nonstationarity?
2 How to detect changes in or deviations from learned regular

behavior?

I Sequential algorithms: detect anomaly as quickly as possible subject
to constraint on false alarm rate



Periodic Statistical Behavior

Average counts on four Sundays

Person Count

Off-path camera

Instagram Count

Off-path camera

Vehicle Count

On-path camera

The average counts show periodic statistical behavior



Statistical Models

I A Bayesian model for change in parameter family

1 A partially observable Markov decision process (POMDP) model
2 Observations are parametrized: parameter could be mean of

observations
3 Parameters divided into two classes: normal and boundary classes
4 Problem is to detect time at which the hidden Markov model jumps

from normal to boundary states

I A non-Bayesian model for change in periodic behavior of data

1 Define a new process: independent and periodically identically
distributed (i.p.i.d.)

2 Observations are modeled as an i.p.i.d process.
3 Detect deviations from normal learned i.p.i.d. behavior



POMDP Model

I States {Xk} a finite state Markov chain

Xk ∈ {A, 0, 1, 2, · · · ,N,N + 1}

I States {1, 2, · · · ,N} are normal and {0,N + 1} are abnormal
I State m corresponds to mean rate λm with

λ0 < λ1 < · · · < λN < λN+1

I Detect when the Markov chain moves from normal to abnormal states

I Controls {Uk} are chosen to implement the detection algorithm

Uk ∈ {1 (stop), 2 (continue)}

I Observations Collected as long as Uk = 2 (continue)

(Yk | Xk = m,Uk = 2) ∼ Pois(λm), m ∈ {0, 1, 2, · · · ,N,N + 1}



POMDP Model: Continued

I Initial distribution π0 for {Xk}

π0 = (π0(A), π0(0), π0(1), · · · , π0(N), π0(N + 1))T

which satisfies π0(A) = π0(0) = π0(N + 1) = 0
I Transition Probabilities: Pk+1|k(uk) = P(uk) are

P(2) =



1 0 0 . . . 0 0
0 a1 0 . . . 0 1− a1

0 p10 p11 . . . p1N p1(N+1)
...

...
...

. . .
...

...
0 pN0 pN1 . . . pNN pN(N+1)

0 1− aN+1 0 . . . 0 aN+1



P(1) =


1 0 0 . . . 0
1 0 0 . . . 0
...

...
...

. . .
...

1 0 0 . . . 0





POMDP Model: Continued

I Cost C (x , u) associated with state X = x and control U = u

C (x , 1) = CT
f ex = (0, 0, cf , cf , · · · , cf , 0) ex [FALSE ALARM]

C (x , 2) = CT
d ex = (0, cd , 0, 0, · · · , 0, cd) ex [DELAY]

I Cost to go for policy Φ = {uk = φk(Ik)}

V (π0) = min
Φ

E

[ ∞∑
k=1

C (xk , uk)

]

I Bellman’s equation satisfied by value function V (π)

V (π) = min

{
CT
f π, C

T
d π +

∑
y

V (T (π, y , 2)) σ(π, y , 2)

}



Optimal Policy for POMDP

I Optimal policy a function of belief state πk = P(Xk = xk |Ik)
I πk can be computed recursively using emission probabilities By (u)

πk+1 = T (πk , yk+1, uk) =
Byk+1

(uk) P(uk)Tπk
1TByk+1

(uk) P(uk)Tπk

I Convexity of stopping region

Theorem

Optimal policy is stationary and stopping region

R1 = {π : µ∗(π) = 1}

is convex

I Standard conditions to establish threshold structure NOT satisfied
I Total positivity conditions for transition structure and emission

probabilities: satisfied
I Monotonicity and submodularity structure of cost function: not

satisfied



Special Structure of POMDP Optimal Policy

Theorem (Post-change absorbing transitions)

Let

P̄ =

p10 p11 . . . p1N p1(N+1)
...

...
. . .

...
...

pN0 pN1 . . . pNN pN(N+1)


If rows of P̄ are identical and a1 = aN+1 = 1, then optimal policy depends
only on components π(0) and π(N + 1) of the belief state π

Theorem (Post-change random transitions)

If rows of P̄ are identical and a1 = aN+1 = 1/2, then optimal policy
depends only on π(0) + π(N + 1) of the belief state π

I With condition a1 = aN+1 = 1/2 problem reduces to classical
quickest change detection test of Shiryaev and Kolmogorov



Application to Real Data: Belief Sum Algorithms

Baseline learned from the first day of data using Poisson modeling

Person Counts Instagram



A Model to Capture Periodic Statistical Behavior

Recall that an independent and identically distributed (i.i.d.) process
is a sequence of random variables that are independent and have the
same distribution.

We define a new category of stochastic processes called independent
and periodically identically distributed (i.p.i.d.) processes:

Definition

Let {Xn} be a sequence of random variables such that the variable Xn has
density fn. The stochastic process {Xn} is called independent and
periodically identically distributed (i.p.i.d) if Xn are independent and there
is a positive integer T such that the sequence of densities {fn} is periodic
with period T :

fn+T = fn, ∀n ≥ 1.

We say that the process is i.p.i.d. with the law (f1, · · · , fT ).

An i.p.i.d. process is cyclostationary. T can be interpreted as the
number of samples in a day or week



Change Point Model

Consider another periodic sequence of densities {gn} such that

gn+T = gn, ∀n ≥ 1.

These densities need not be all different from the set of densities
(f1, · · · , fT ), but we assume that there exists at least an i such that
they are different:

gi 6= fi , for some i = 1, 2, · · · ,T .

Our change point model is: there exists ν ∈ N such that

Xn ∼

{
fn, ∀n < ν,

gn ∀n ≥ ν.

This model is equivalent to saying that we have two i.p.i.d. processes,
one governed by the densities (f1, · · · , fT ) and another governed by
the densities (g1, · · · , gT ), and at the change point ν, the process
switches from one i.p.i.d. process to another



An Algorithm For Detecting Changes in i.p.i.d. models

We define the following algorithm and called the Periodic-CUSUM
algorithm: compute the sequence of statistics

Wn+1 = max
1≤k≤n+1

n+1∑
i=k

log
gi (Xi )

fi (Xi )

and raise an alarm as soon as the statistic is above a threshold A:

τc = inf{n ≥ 1 : Wn > A}

Why this statistic?
∑n+1

i=k log gi (Xi )
fi (Xi )

is the logarithm of the likelihood
ratio between observations X1, · · · ,Xn+1, given that the change point
ν = k . Since, we do not know if ν = k , we use its maximum
likelihood estimate.

We call it periodic-CUSUM because for T = 1 this algorithm reduces
to a famous CUSUM algorithm in the literature



Recursive Computation of Periodic-CUSUM Statistic

Theorem

The statistic sequence {Wn} can be recursively computed as

Wn+1 = W+
n + log

gn+1(Xn+1)

fn+1(Xn+1)
,

where (x)+ = max{x , 0}. Further, since the set of pre- and post-change
densities (f1, · · · , fT ) and (g1, · · · , gT ) are finite, the recursion can be
computed using finite memory needed to store these 2T densities, past
statistic, and current observation.

In general, in change point literature, it is rare to find
recursively computable algorithms that are also optimal in a
well-defined sense. Is Periodic-CUSUM optimal in any sense?



Stochastic Optimization Problem For Change Detection

Change point: the change point is ν and unknown

Stopping time: a positive integer valued random variable τ is called
a stopping time if the decision to stop at time n (τ = n) is only a
function of observations until time n, (X1, · · · ,Xn)

Pollak’s (1985) formulation:

min
τ

sup
ν≥1

Eν [τ − ν|τ ≥ ν]

subj. to E∞[τ ] ≥ β,

Lorden’s (1971) formulation

min
τ

sup
ν≥1

ess sup Eν [τ − ν|X1, · · · ,Xν−1]

subj. to E∞[τ ] ≥ β,

These are the two most famous optimization problems in the
literature



Lower Bound On Any Stopping Time

Let I = 1
T

∑T
i=1 D(gi ‖ fi ) where

D(gi‖fi ) =

∫
x
gi (x) log

gi (x)

fi (x)
dx .

is the Kullback-Leibler divergence between the densities gi and fi .

Theorem

If 0 < I <∞, then for any stopping time τ satisfying the false alarm
constraint E∞[τ ] ≥ β, we have as β →∞

sup
ν≥1

ess sup Eν [τ − ν|X1, · · · ,Xν−1]

≥ sup
ν≥1

Eν [τ − ν|τ ≥ ν] ≥ log β

I
(1 + o(1)),

where an o(1) term is one that goes to zero in the limit as β →∞.



Optimality of Periodic-CUSUM

Theorem

Let the information number I satisfy 0 < I <∞. Then, the
Periodic-CUSUM stopping time τc with A = log β satisfies the false alarm
constraint

E∞[τc ] ≥ β,

and as β →∞,

sup
ν≥1

Eν [τc − ν|τc ≥ ν]

≤ sup
ν≥1

ess sup Eν [τc − ν|X1, · · · ,Xν−1]

≤ A

I
(1 + o(1)) =

log β

I
(1 + o(1)).



Unknown Post-Change Model

What if the post-change i.p.i.d. distributions are unknown?

Assume that the post-change i.p.i.d. law belongs to a finite set of M
possible distributions

(g
(1)
1 , · · · , g (1)

T ), · · · , (g (M)
1 , · · · , g (M)

T )

Compute a Periodic-CUSUM statistic for each possible post-change
hypothesis:

W
(`)
n+1 =

(
W

(`)
n

)+
+ log

g
(`)
n+1(Xn+1)

fn+1(Xn+1)

τc` = inf
{
n ≥ 1 : W

(`)
n ≥ log(βM)

}
Use the following first-stopping rule

τcm = inf

{
n ≥ 1 : max

1≤`≤M
W

(`)
n ≥ log(βM)

}
= min

`
τc`.

which is the first time any of the ` Periodic-CUSUMs raise an alarm



Optimality of first-stopping rule

Theorem

The false alarm constraint is satisfied:

E∞[τcm] ≥ β.

Further, if (g
(`)
1 , · · · , g (`)

T ) is the true post-change i.p.i.d. law and

I` = 1
T

∑T
i=1 D(g

(`)
i ‖ fi ), then

sup
ν≥1

Eν [τcm − ν|τcm ≥ ν] ≤ sup
ν≥1

ess sup Eν [τcm − ν|X1, · · · ,Xν−1]

≤ log β

I`
(1 + o(1)).

The stopping rule τcm is thus asymptotically optimal with respect to
the criteria of Lorden and Pollak, uniformly over each possible

post-change hypothesis (g
(`)
1 , · · · , g (`)

T ), ` = 1, · · · ,M.



Parametric i.p.i.d. Models

Learning an i.p.i.d. model mean learning the T densities (f1, · · · , fT )
and possibly (g1, · · · , gT ).

Learning entire distributions is hard. This motivates the following
definition

Definition

A stochastic process {Xn} is called a parametric i.p.i.d. process if

Xn
ind∼ p(·; θn), ∀n

θn = θn+T , ∀n.

Learning an i.p.i.d. model is then equivalent to learning a finite set of
T parameters (θ1, · · · , θT ).



Step Model for Parameters

parametric i.p.i.d. model: too many parameters to learn? If
sampling frequency is high and T corresponds to a week, T
may be in thousands

Xn
ind∼ p(·; θn), ∀n

θn = θn+T , ∀n.

Divide parameters {θk}Tk=1 into batches

θB1︷ ︸︸ ︷
θ1, · · · , θN1 ,

θB2︷ ︸︸ ︷
θN1+1, · · · , θN2 , · · · ,

θBE︷ ︸︸ ︷
θNE−1+1, · · · , θNE

Assume step model: parameters constant within a batch (e.g. an
hour)

θB1︷ ︸︸ ︷
θ(1), · · · , θ(1),

θB2︷ ︸︸ ︷
θ(2), · · · , θ(2), · · · ,

θBE︷ ︸︸ ︷
θ(E), · · · , θ(E)

Learn parameters θ(1) to θ(E) from data and detect deviations from it
in real-time: E � T



Application to Vehicle Data

Baseline learned from first day of data using Poisson modeling.
Post-change parameter is set to half of baseline.

Average Vehicle Counts Vehicle Counts Periodic-CUSUM Statistic



Application to Real Data: Periodic-CUSUM Algorithm



Conclusions

New Framework for Multimodal Signal Processing: Extracted
counts of objects or sub-events from the data to convert multimodal
data into a single modality

New Statistical Models for Detection: Developed new POMDP
formulation and defined new stochastic process family (i.p.i.d) to
capture nonstationary processes

New Algorithms and Optimality: Obtained algorithms that are
optimal with respect to well-defined criteria

Application to Real Data: Applied the developed algorithms to
data collected from NYC after learning the baseline from the first day
of data collection



Publications

The results in this talk can be found in the following papers:

1 T. Banerjee, P. Gurram, and G. Whipps, “Quickest Detection Of Deviations
From Periodic Statistical Behavior, ” submitted to ICASSP 2019.
https://arxiv.org/abs/1810.12760.

2 T. Banerjee, G. Whipps, P. Gurram, and V. Tarokh, “Cyclostationary Statistical
Models and Algorithms for Anomaly Detection Using Multi-Modal Data,” In
IEEE Global Conference on Signal and Information Processing (GlobalSIP), 2018.
https://arxiv.org/abs/1807.06945

3 T. Banerjee, G. Whipps, P. Gurram, and V. Tarokh, “Sequential event detection
using multimodal data in nonstationary environments,” In Proc. of
International Conference on Information Fusion (FUSION), Cambridge, UK, July,
2018. https://arxiv.org/abs/1803.08947
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