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Critical Energy: Applications
Smart Power Systems
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Artificial Intelligence Solutions in Power
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Very-Short Term Load Forecasting (VSTLF)

 Planning of Grid Operation and 
Scheduling of Maintenance

 Efficient Energy Management
 Grid Reliability

 Prevent Voltage Drop
 Prevent Overvoltage
 Reduce Faults and Blackouts

 Auction based Energy Markets
 Determine Price

 Smart Cities / Optimization 8

 High Volatility of Data
 Dynamically Varying Factors
 Complicated Load Features
 Random Effects
 Irregular Days
 Real-Time Forecasting (Speed)

USEFULENESS CHALLENGES

 VSTLF: Forecasting of Load Demand from a few minutes up to two hours ahead-of-time
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Gaussian Process for Machine Learning
 In machine learning: 

 Gaussian Processes (GP) are identified as learning kernel methods

 Kernels: Dual Representation: 

 Prior distribution over functions:
 Predictive distribution (Rasmussen 2006):

 With K being the Gram Matrix:

Training 
Data
f(x,y)

GPInput x Prediction
y

( ) ( | 0, )p y N y K

  1
1 *

T
Nm x k K t 
 2 1

1 * *
T

N Nx k k K k   

2
*( , ) ( , )i j i j n ijK x x k x x   

1 2 1 2( , ) ( ) ( )Tk x x x x 

Learning KernelNormal distr. of y 
for input: xN+1



Methodology
 Analysis of Demand Data

 Family of GP
 Different kernels

 Formulating Multi-Objective 
Problem

 Use of Evolutionary 
Computing 

 2 Stages of Learning 
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Load Analysis: Linear Ensemble
ெ ெ ேே ேே ொ ொ ீ ீ ே ே

Approach
 Different Data Properties modeled by various kernels

 Weights of GP Predictions (PM,PNN,PQ,PG,PN)
 Contribution of Data Properties

 Approximation of Load Dynamics via Data Properties of Predictions

Unknown

Matérn Neural Net Quadratic Gaussian Noise



Kernel Formulas
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Objective Functions
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Multi-Objective Optimization Problem
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α = ெ ேே ொ ீ ே
6 most recent measurement (last 30 min)



Solution: Pareto Theory

A point,            is Pareto Optimal iff
there does not exist another point, 

such that                      and 
for at least one 

function .

•A Pareto frontier illustration where each box 
represents a feasible solution. 
•Boxes Z and K are part of Pareto Frontier 
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Multiobjective Optimization Problems
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SOLUTION FINDING Using Evolutionary Computing
 Non-dominated Sorting Genetic Algorithm – II (NSGA-II)

 Uses Pareto Theory to identify a solution



Testing Setup
 Datasets from Chicago Metropolitan Area
 Training Datasets

Measurements from Previous Day
Measurements from respective Day a Week ago
Measurements from respective Day a Year ago

 Forecasts of Load at 5min Intervals
 Benchmark against:

 Support Vector Regression using Gaussian Kernel
 Autoregressive Moving Average (ARMA)

 Determined by Akaike Information Criterion (AIC)
16



Regular Week Results
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Objective
GP 

Ensemble
SVR 

Gaussian
ARMA 
(AIC)

GP 
Ensemble

SVR 
Gaussian

ARMA 
(AIC)

Monday - Friday Saturday - Sunday
MSE 0.066 2.4377 0.691 0.0553 4.4798 0.7915
RMSE 0.2366 1.2433 0.7999 0.2201 1.7876 0.8579
MAE 0.1974 1.2052 0.6276 0.1872 1.7643 0.6596
MAPE 1.1756 6.6554 4.021 1.5877 14.0696 6.4998
MAP 0.0237 0.0872 0.2014 0.0316 0.1716 0.3198
Theil 0.0009 0.0044 0.0022 0.0017 0.0118 0.0071

FALL WEEK (September)

Objective
GP 

Ensemble
SVR 

Gaussian
ARMA 
(AIC)

GP 
Ensemble

SVR 
Gaussian

ARMA 
(AIC)

Monday - Friday Saturday - Sunday
MSE 0.3686 9.0534 7.9835 0.4042 4.4035 0.5689
RMSE 0.5173 2.5245 2.0011 0.5092 1.6485 0.6964
MAE 0.4552 2.4932 1.4666 0.4428 1.6055 0.5197
MAPE 1.8561 9.5868 7.4123 2.04 7.1642 2.4531
MAP 0.0331 0.1108 0.4912 0.0374 0.089 0.1297
Theil 0.0009 0.0039 0.0041 0.0011 0.0033 0.0015

WINTER WEEK (January)

Objective
GP 

Ensemble
SVR 

Gaussian
ARMA 
(AIC)

GP 
Ensemble

SVR 
Gaussian

ARMA 
(AIC)

Monday - Friday Saturday - Sunday
MSE 0.2973 1.956 7.8579 0.0669 8.6265 0.4441
RMSE 0.4404 1.2115 1.9918 0.233 2.6345 0.6067
MAE 0.3899 1.1675 1.7528 0.1979 2.6201 0.47
MAPE 1.9895 5.5971 7.8527 1.5036 19.8321 3.8302
MAP 0.0343 0.0742 0.2815 0.0296 0.2278 0.2183
Theil 0.0012 0.003 0.0036 0.0014 0.0154 0.0034

SPRING WEEK (April)

Objective
GP 

Ensemble
SVR 

Gaussian
ARMA 
(AIC)

GP 
Ensemble

SVR 
Gaussian

ARMA 
(AIC)

Monday - Friday Saturday - Sunday
MSE 0.071 3.5728 0.6375 0.0535 6.9237 0.4078
RMSE 0.2403 1.4586 0.7569 0.2048 2.4092 0.6326
MAE 0.2007 1.422 0.5868 0.1716 2.3927 0.5031
MAPE 0.987 6.1254 3.0301 1.302 18.8903 4.0509
MAP 0.0203 0.079 0.1487 0.0268 0.2138 0.1692
Theil 0.0006 0.003 0.0016 0.0012 0.0156 0.0038

SUMMER WEEK (Jun-Jul)



Special Days Results
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Objective
GP 

Ensemble
SVR 

Gaussian
ARMA 
(AIC)

GP 
Ensemble

SVR 
Gaussian

ARMA 
(AIC)

Thanksgiving Day Black Friday Day
MSE 0.0749 16.2865 0.2872 0.0596 2.4747 0.2369
RMSE 0.2437 3.2479 0.5359 0.2236 1.3958 0.4867
MAE 0.2062 3.2338 0.4356 0.1860 1.3658 0.3891
MAPE 1.6424 25.7547 3.6461 1.1672 7.5482 2.5714
MAP 0.0326 0.2819 0.1327 0.0237 0.0943 0.1160
Theil 0.0015 0.0206 0.0036 0.0009 0.0045 0.0016

Thanksgiving – Black Friday

Objective
GP 

Ensemble
SVR 

Gaussian
ARMA 
(AIC)

GP 
Ensemble

SVR 
Gaussian

ARMA 
(AIC)

Martin Luther King Day New Year Day
MSE 0.1000 12.8354 0.4483 0.0624 8.6289 0.3585
RMSE 0.2834 3.3455 0.6696 0.2333 2.7821 0.5987
MAE 0.2399 3.3245 0.5312 0.2007 2.7705 0.4621
MAPE 1.0342 13.3860 2.3684 1.3063 18.6138 3.2285
MAP 0.0203 0.1494 0.1107 0.0251 0.2081 0.1902
Theil 0.0005 0.0056 0.0011 0.0010 0.0126 0.0026

M. Luther King – New Year

Objective
GP 

Ensemble
SVR 

Gaussian
ARMA 
(AIC)

GP 
Ensemble

SVR 
Gaussian

ARMA 
(AIC)

Independence Day Labor Day
MSE 0.0580 35.3353 3.1954 0.0453 17.8265 0.2657
RMSE 0.2196 5.2498 1.7875 0.2015 4.0581 0.5154
MAE 0.1878 5.2441 1.4326 0.1687 4.0526 0.4218
MAPE 1.5770 42.8576 15.4015 1.3505 32.3218 3.5359
MAP 0.0307 0.4624 0.6398 0.0272 0.3484 0.1479
Theil 0.0015 0.0351 0.0156 0.0013 0.0261 0.0033

Independence - Labor

Objective
GP 

Ensemble
SVR 

Gaussian
ARMA 
(AIC)

GP 
Ensemble

SVR 
Gaussian

ARMA 
(AIC)

Good Friday Day Memorial Day
MSE 0.0800 3.1283 0.5346 0.0450 76.0419 0.0723
RMSE 0.2602 1.6171 0.7311 0.1976 8.0137 0.2689
MAE 0.2198 1.5874 0.5931 0.1631 8.0113 0.1980
MAPE 1.1963 8.6589 3.4616 1.3843 67.6102 1.6731
MAP 0.0241 0.1056 0.1445 0.0295 0.7090 0.0868
Theil 0.0008 0.0050 0.0020 0.0014 0.0574 0.0019

Good Friday - Memorial



Main Conclusions from VSTLF
 Analysis of Demand Load

 Linear Ensemble of GP
 Set of 5 different Kernels

 Two stage Learning
 Individual GP
 Optimization of GP Ensemble

 Multi-objective Problem
 6 different Objective (error measures)

 Testing
 High Accuracy

 ARMA (AIC)
 SVR with Gaussian Kernel 19



Winter (January) Week Visualization
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Critical Energy Applications:
National Security and Nuclear 
Nonproliferation
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Nuclear Security and Nonproliferation 
Challenges
 Identify the Origins of Nuclear Materials (e.g., Forensics)
 Monitor Global Fissile Material Production and Accountability
 Monitor Nonproliferation Activities (e.g., Hidden Facilities)
 Counter Nuclear Smuggling
 Enhance International Safeguards
 Enhance Public Safety from Terrorist Attacks

22

Border Inspection



Artif. Intelligence: Challenges
 Data Analysis from Radiation Sensors

 Patterns of Interest
 Data Analysis of Sensor Networks

Mobile sensors / Static Sensors
 Data Fusion and Decision Making
 Threat Identification

 Support Decision Making
23

NYPD Officer with Rad Detector

Monitoring for Radioactive Threats
AI Solutions: 
Expertise not needed
Minimum Attention (less Fatigue)



Sensor Data
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1) Measured Spectrum 

= Aggregation of Patterns
2) Pattern -> Source Pattern

-> Background Pattern

Gamma Ray 
Spectrum
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Rad Time Series

BIG DATA PROBLEM



• Signal analysis methodology principles
• Spectrum Stripping/ Synthesis

Pattern 1
Pattern 2
Pattern 3

Analysis of a Spectrum
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Observed



Analysis of Gamma Ray Signals
Fuzzy Logic Isotope Identifier
Alamaniotis, M., “Data Interpretation and Algorithms,” Active Interrogation in Nuclear Security-Science, Technology, and Systems, Book 
edited by I. Jovanovic and A. Erickson, Springer Nature, 2017, pp. 1-30.

Alamaniotis, M., Heifetz, A., Raptis, A., & Tsoukalas, L.H, “Fuzzy-Logic Radioisotope Identifier for Gamma Spectroscopy in Source 
Search,” IEEE Transactions on Nuclear Science, Institute of Electrical and Electronic Engineers, vol. 60 (4), August 2013, pp. 3014-3024.
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Machine Intelligence Solution: Fuzzy Representation

Energy Peak Fuzzy 
Representation

Isotope Library

Isotope Entry

0

1.0

1.17 1.33 MeV

μ
Co60_PEAK1 Co60_PEAK2Ga67

0.093 

Np237

0.087 
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Use of 
Quantum 
Mechanics:
Feature 
Extraction 
(Emission 
Energies)



IF Candidate is Plutonium1, THEN  Detection is TRUE

IF Candidate is COBALT1, THEN  Detection is TRUE

……..

……….

IF Candidate is U235_1, THEN  Detection is TRUE

Detection 
Confidence 
for each 
Library 
Isotope

RULES

OUTPUT 
SET

INPUTS

1

1

n
Ij Ijj

I n
Ijj

w cDC w
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Machine Intelligence Solution: Fuzzy Inference

Feature Extraction 
from Measured Data



Future Research Directions
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Smart Energy Systems
Machine Intelligence in
 Forecasting
 Integration of Renewables
 Intelligent Management of Power Grid
 Integration of Electricity with other forms of Energy
 Modeling/Predicting Consumer Behavior
 Smart Energy for Smart Cities
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Nuclear Security
Intelligence in
 Smart Rad Sensor Networks
 Threat Identification
 Modeling of Background Radiation
 Data Interpretation
 Data Visualization
 Cybersecurity and Physical Impact

31

Taxis: Sensor Network in 
Urban Environments



Power Systems and Nuclear Security
Machine Intelligence
Analysis of Power Grid Data

 Enhancing Nuclear Security
 Consumption Profiles of Nuclear Sites

Analysis of Grid Contextual Environments
 Detection of Hidden Facilities

32



Summary and Conclusion
 Brief Bio
 Machine Learning in Critical Energy Applications

 Power Systems
 Learning Kernels for VSTLF

 Nuclear Security
 Fuzzy Analysis of Spectra

 Future Directions
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Thank you for your Attention

Questions?

Discussion
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