The University of Texas at San Antonio[™]

Applied Artificial Intelligence in Energy: Challenges and Solutions

Miltos Alamaniotis, Ph.D.

Assistant Professor Electrical and Computer Engineering University of Texas at San Antonio

Department of Electrical and Computer Engineering, University of Texas at San Antonio

Outline

- Biography
- Research Program
- Machine Learning Solutions in Power Systems
 Data-Driven Load Forecasting
- Data Analysis in Nuclear Security
 Machine Intelligence Solutions
- Future Directions

Brief Biography

Education

2012 Ph.D. Nuclear Eng.(Intelligent Systems), *Purdue University*

2010 M.S. Nuclear Eng.(Intelligent Systems), *Purdue University*

2005 Dipl.-Ing. Electrical and Computer Eng., University of Thessaly, Greece

University of Thessaly, Volos, Greece

3

2018 Power System Certificate, Georgia Institute of Technology

Research Expe	rience
2014 – Present	Research Assistant Professor, Purdue University
March 2017	Visiting Professor, Electrical and Computer Eng., University of Thessaly
May 2016	Visiting Scientist, Power and Energy Systems Group, Oak Ridge National Laboratory
June 2015	Research Visitor, Nevada National Security Site (LANL)
2012-2014	Postdoctoral Research Fellow, UNEP, The University of Utah
2010-2012	Guest Researcher, Detection and Diagnostics Group, Argonne National Laboratory
2004	Summer Intern, Greek Telecommunications Organization
1	

Research Program

- Artificial Intelligence in Power Systems
- Smart Power and Energy Systems
- Pattern Recognition in Cyber-Physical Systems

Alamaniotis, M., Gatsis, N., & Tsoukalas, L.H., "Virtual Budget: Integration of Electricity Load and Price Anticipation for Load Morphing in Price-Directed Energy Utilization," *Electric Power Systems Research, In press.*

Alamaniotis, M., Bargiotas, D., Bourbakis, N., & Tsoukalas, L.H., "Genetic Optimal Regression of Relevance Vector Machines for Electricity Price Forecasting in Smart Grids," *IEEE Transactions on Smart Grid*, vol. 6(6), November 2015, pp. 2997-3005.

Alamaniotis, **M**., Ikonomopoulos, A., & Tsoukalas, L.H., "Evolutionary Multiobjective Optimization of Kernel-based Very Short-Term Load Forecasting," *IEEE Transactions on Power Systems*, Institute of Electrical and Electronic Engineers, vol. 27 (3), August 2012, pp. 1477-1484.

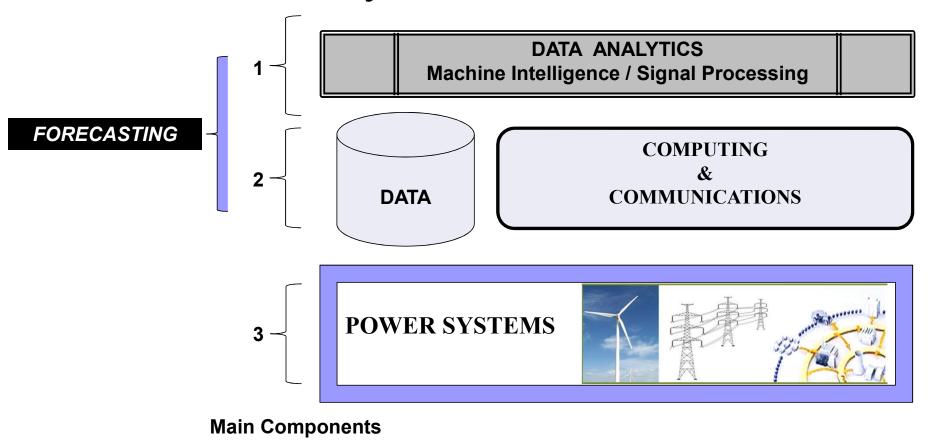
- Data Analytics and Sensor Networks
- Machine Learning in National Security and Nuclear Nonproliferation Applications

Alamaniotis, **M**., Heifetz, A., Raptis, A., & Tsoukalas, L.H, "Fuzzy-Logic Radioisotope Identifier for Gamma Spectroscopy in Source Search," *IEEE Transactions on Nuclear Science*, vol. 60 (4), August 2013, pp. 3014-3024.

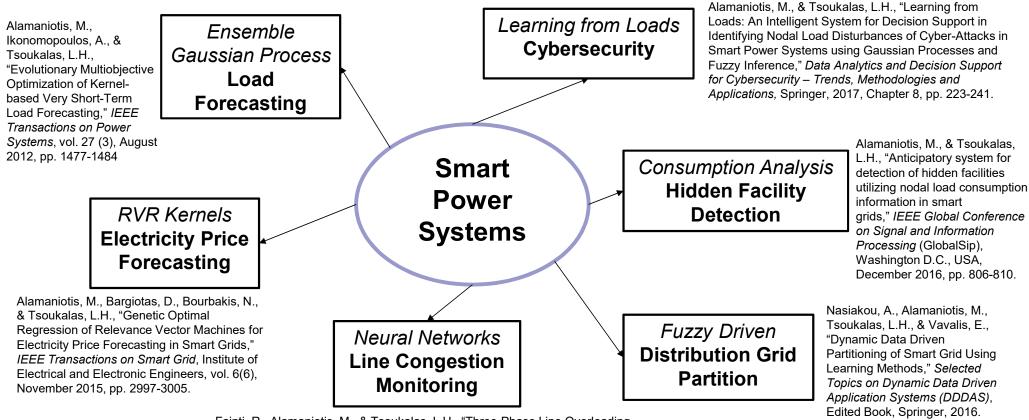
Alamaniotis, M., Mattingly, J., & Tsoukalas, L.H., "Kernel-based Machine Learning for Background Estimation of Nal Low Count Gamma Ray Spectra," *IEEE Transactions on Nuclear Science*, Institute of Electrical and Electronic Engineers, vol. 60 (3), June 2013, pp. 2209-2221..

Alamaniotis, M., & Tsoukalas, L.H., "Assessment of Gamma-Ray Spectra Analysis Method Utilizing the Fireworks Algorithm for Various Error Measures," *Critical Developments and Applications of Swarm Intelligence*, Chapter 7, 2017, pp. 1-22.

Critical Energy: Applications Smart Power Systems



Artificial Intelligence Solutions in Power



Fainti, R., Alamaniotis, M., & Tsoukalas, L.H., "Three-Phase Line Overloading Predictive Monitoring utilizing Artificial Neural Networks," *IEEE International Conference on Intelligent System Application to Power Systems (ISAP 2017)*, San Antonio, TX, USA, September 2017, pp. 6.

6

Learning Kernel Machines: Very-Short-Term Load Forecasting

Alamaniotis, M., & Tsoukalas, L.H., "Multi-Kernel Assimilation for Predictive Intervals in Nodal Short Term Load Forecasting," *IEEE International Conference on Intelligent System Application to Power Systems* (ISAP 2017), San Antonio, TX, USA, September 2017, pp. 1-6.

Alamaniotis, M., Ikonomopoulos, A., & Tsoukalas, L.H., "Evolutionary Multiobjective Optimization of Kernel-based Very Short-Term Load Forecasting," *IEEE Transactions on Power Systems*, Institute of Electrical and Electronic Engineers, vol. 27 (3), August 2012, pp. 1477-1484.

7

Very-Short Term Load Forecasting (VSTLF)

• VSTLF: Forecasting of Load Demand from a few minutes up to two hours ahead-of-time

USEFULENESS

- Planning of Grid Operation and Scheduling of Maintenance
- Efficient Energy Management
- Grid Reliability
 - Prevent Voltage Drop
 - Prevent Overvoltage
 - Reduce Faults and Blackouts
- Auction based Energy Markets
 Determine Price
- Smart Cities / Optimization

CHALLENGES

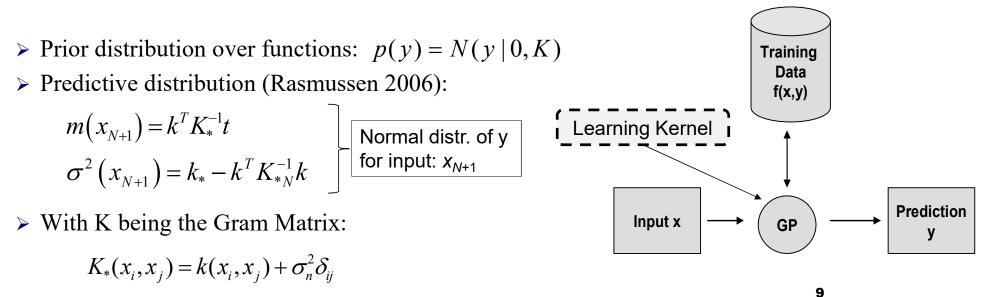
- High Volatility of Data
- Dynamically Varying Factors
- Complicated Load Features
- Random Effects
- Irregular Days
- Real-Time Forecasting (Speed)

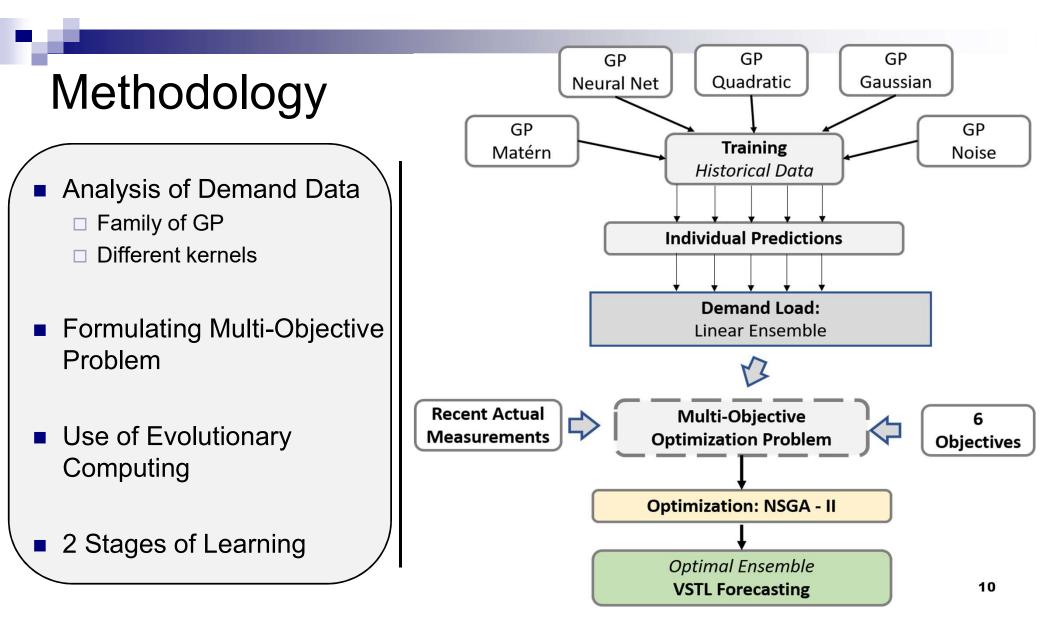
Gaussian Process for Machine Learning

In machine learning:

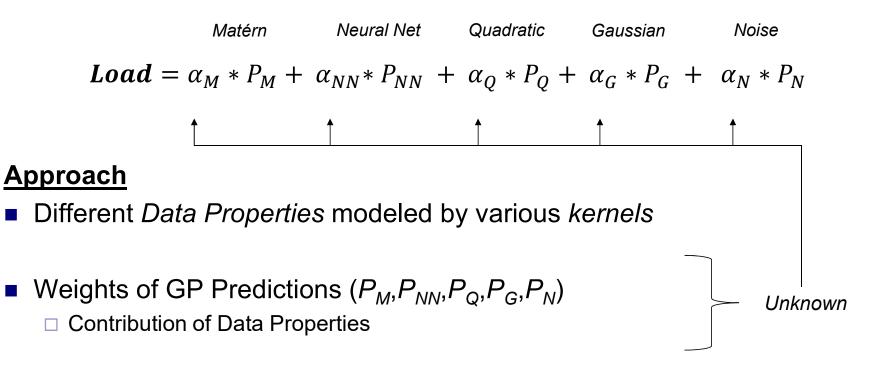
> Gaussian Processes (GP) are identified as learning kernel methods

> Kernels: Dual Representation:
$$k(x_1, x_2) = \varphi(x_1)^T \varphi(x_2)$$





Load Analysis: Linear Ensemble



Approximation of Load Dynamics via Data Properties of Predictions

Kernel Formulas

Matérn Kernel

$$k(\mathbf{x}_1, \mathbf{x}_2) = \left(\frac{2^{1-\theta_1}}{\Gamma(\theta_1)}\right) \left[\frac{\sqrt{2\theta_1}|\mathbf{x}_1 - \mathbf{x}_2|}{\theta_2}\right]^{\theta_1} K_{\theta_1}\left(\frac{\sqrt{2\theta_1}|\mathbf{x}_1 - \mathbf{x}_2|}{\theta_2}\right)$$

Neural Network Kernel

$$k(\mathbf{x}_{1}, \mathbf{x}_{2}) = \theta_{0} \sin^{-1} \left(\frac{2\tilde{\mathbf{x}}_{1}^{T} \Sigma \tilde{\mathbf{x}}_{2}}{\sqrt{\left(1 + 2\tilde{\mathbf{x}}_{1}^{T} \Sigma \tilde{\mathbf{x}}_{1}\right)\left(1 + 2\tilde{\mathbf{x}}_{2}^{T} \Sigma \tilde{\mathbf{x}}_{2}\right)}} \right)$$

Gaussian Kernel

$$k(\mathbf{x}_1, \mathbf{x}_2) = \exp\left(-\frac{\|\mathbf{x}_1 - \mathbf{x}_2\|^2}{2\sigma^2}\right)$$

Rational Quadratic Kernel

$$k(\mathbf{x}_{1}, \mathbf{x}_{2}) = \left(1 + \frac{|\mathbf{x}_{1} - \mathbf{x}_{2}|^{2}}{2a\theta_{1}^{2}}\right)^{-a}$$

Noise Kernel

$$k(\mathbf{x}_1, \mathbf{x}_2) = \theta_1 \delta_{x_1 x_2}$$

Objective Functions

Mean Square Error

 $MSE = \frac{1}{N} \sum_{t=1}^{N} (R_t - P_t)^2$

Mean Absolute Error

 $MAE = \frac{1}{N} \sum_{t=1}^{N} \left| R_t - P_t \right|$

Maximum Absolute Percentage Error

$$MAP = \max\left(100 \times \left|\frac{R_t - P_t}{R_t}\right|\right)$$

Root Mean Square Error

$$RMSE = \sqrt{\frac{\sum_{t=1}^{N} (R_t - P_t)^2}{N}}$$

Mean Absolute Percentage Error

Theil Coefficient

$$T h e i l = \frac{\sqrt{\sum_{t=1}^{N} (R_{t} - P_{t})^{2}}}{\sqrt{\frac{\sum_{t=1}^{N} (R_{t})^{2}}{N}}}$$

 R_t : Actual Value at time t

 P_t : Forecasted Value at time t

 $MAPE = \frac{100}{N} \sum_{t=1}^{N} \left| \frac{R_t - P_t}{R_t} \right|$

13

Multi-Objective Optimization Problem

 $\begin{array}{l} \underset{\alpha}{\text{minimize }} \left[\mathbf{M}(\boldsymbol{a}) \right] \\ \textit{subject to } \left\{ Load_{F}^{(t)}(\boldsymbol{\alpha}) \geq 0 \right\} \\ \textit{where } t = 1, \dots, t_{n} \end{array}$

 $M(\boldsymbol{\alpha}) = [MSE(\boldsymbol{\alpha}), RMSE(\boldsymbol{\alpha}), MAE(\boldsymbol{\alpha}), MAPE(\boldsymbol{\alpha}), MAP(\boldsymbol{\alpha}), Theil(\boldsymbol{\alpha})]$ $\boldsymbol{\alpha} = [a_M, a_{NN}, a_Q, a_G, a_N]$ $n = 6 \longrightarrow 6 \text{ most recent measurement (last 30 min)}$

14

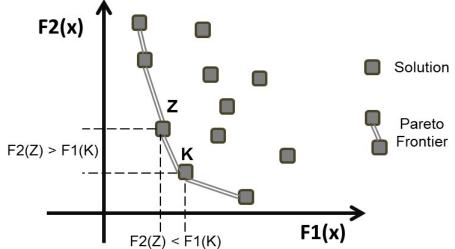
Solution: Pareto Theory

Multiobjective Optimization Problems

$$\min_{\mathbf{x}} \mathbf{C}(\mathbf{x}) = \begin{bmatrix} C_1(\mathbf{x}), C_2(\mathbf{x}), \dots, C_N(\mathbf{x}) \end{bmatrix}$$

s.t. $\mathbf{f}_i(\mathbf{x}) \le 0, \quad i = 1, \dots, k$
 $\mathbf{g}_i(\mathbf{x}) = 0, \quad i = 1, \dots, m$

A point, $\mathbf{x}^* \in \mathbf{X}$, is Pareto Optimal iff there does not exist another point, $\mathbf{x} \in \mathbf{X}$, such that $\mathbf{C}(\mathbf{x}) \leq \mathbf{C}(\mathbf{x}^*)$, and $C_i(\mathbf{x}) \leq C_i(\mathbf{x}^*)$ for at least one function.



•A Pareto frontier illustration where each box represents a feasible solution.

•Boxes Z and K are part of Pareto Frontier

SOLUTION FINDING Using Evolutionary Computing

- Non-dominated Sorting Genetic Algorithm II (NSGA-II)
 - Uses Pareto Theory to identify a solution

Testing Setup

- Datasets from Chicago Metropolitan Area
- Training Datasets
 - Measurements from Previous Day
 - Measurements from respective Day a Week ago
 - Measurements from respective Day a Year ago
- Forecasts of Load at 5min Intervals
- Benchmark against:
 - Support Vector Regression using Gaussian Kernel
 - □ Autoregressive Moving Average (ARMA)
 - Determined by Akaike Information Criterion (AIC)

Regular Week Results

FALL WEEK (September)

	GP	SVR	ARMA	GP	SVR	ARMA	
Objective	Ensemble	Gaussian	(AIC)	Ensemble	Gaussian	(AIC)	
	М	onday - Frid	day	Saturday - Sunday			
MSE	0.066	2.4377	0.691	0.0553	4.4798	0.7915	
RMSE	0.2366	1.2433	0.7999	0.2201	1.7876	0.8579	
MAE	0.1974	1.2052	0.6276	0.1872	1.7643	0.6596	
MAPE	1.1756	6.6554	4.021	1.5877	14.0696	6.4998	
MAP	0.0237	0.0872	0.2014	0.0316	0.1716	0.3198	
Theil	0.0009	0.0044	0.0022	0.0017	0.0118	0.0071	

WINTER WEEK (January)

Objective	GP Ensemble	SVR Gaussian	ARMA (AIC)	GP Ensemble	SVR Gaussian	ARMA (AIC)		
	Μ	onday - Frid	day	Saturday - Sunday				
MSE	0.3686	9.0534	7.9835	0.4042	4.4035	0.5689		
RMSE	0.5173	2.5245	2.0011	0.5092	1.6485	0.6964		
MAE	0.4552	2.4932	1.4666	0.4428	1.6055	0.5197		
MAPE	1.8561	9.5868	7.4123	2.04	7.1642	2.4531		
MAP	0.0331	0.1108	0.4912	0.0374	0.089	0.1297		
Theil	0.0009	0.0039	0.0041	0.0011	0.0033	0.0015		

SPRING WEEK (April)

	GP	SVR	ARMA	GP	SVR	ARMA
Objective	Ensemble	Gaussian	(AIC)	Ensemble	Gaussian	(AIC)
	Μ	londay - Frid	day	Sat	urday - Sun	day
MSE	0.2973	1.956	7.8579	0.0669	8.6265	0.4441
RMSE	0.4404	1.2115	1.9918	0.233	2.6345	0.6067
MAE	0.3899	1.1675	1.7528	0.1979	2.6201	0.47
MAPE	1.9895	5.5971	7.8527	1.5036	19.8321	3.8302
MAP	0.0343	0.0742	0.2815	0.0296	0.2278	0.2183
Theil	0.0012	0.003	0.0036	0.0014	0.0154	0.0034

SUMMER WEEK (Jun-Jul)

	GP	SVR	ARMA	GP	SVR	ARMA
Objective	Ensemble	Gaussian	(AIC)	Ensemble	Gaussian	(AIC)
	Μ	londay - Frie	day	Sat	urday - Sun	day
MSE	0.071	3.5728	0.6375	0.0535	6.9237	0.4078
RMSE	0.2403	1.4586	0.7569	0.2048	2.4092	0.6326
MAE	0.2007	1.422	0.5868	0.1716	2.3927	0.5031
MAPE	0.987	6.1254	3.0301	1.302	18.8903	4.0509
MAP	0.0203	0.079	0.1487	0.0268	0.2138	0.1692
Theil	0.0006	0.003	0.0016	0.0012	0.0156	0.0038

Special Days Results

Thanksgiving – Black Friday

	GP	SVR	ARMA	GP	SVR	ARMA	
Objective	Ensemble	Gaussian	(AIC)	Ensemble	Gaussian	(AIC)	
	Th	anksgiving	Day	Black Friday Day			
MSE	0.0749	16.2865	0.2872	0.0596	2.4747	0.2369	
RMSE	0.2437	3.2479	0.5359	0.2236	1.3958	0.4867	
MAE	0.2062	3.2338	0.4356	0.1860	1.3658	0.3891	
MAPE	1.6424	25.7547	3.6461	1.1672	7.5482	2.5714	
MAP	0.0326	0.2819	0.1327	0.0237	0.0943	0.1160	
Theil	0.0015	0.0206	0.0036	0.0009	0.0045	0.0016	

M. Luther King – New Year

••••	GP	SVR	ARMA	GP	SVR	ARMA
Objective	Ensemble	Gaussian	(AIC)	Ensemble	Gaussian	(AIC)
	Marti	n Luther Kir	ng Day	N	ew Year Day	y
MSE	0.1000	12.8354	0.4483	0.0624	8.6289	0.3585
RMSE	0.2834	3.3455	0.6696	0.2333	2.7821	0.5987
MAE	0.2399	3.3245	0.5312	0.2007	2.7705	0.4621
MAPE	1.0342	13.3860	2.3684	1.3063	18.6138	3.2285
MAP	0.0203	0.1494	0.1107	0.0251	0.2081	0.1902
Theil	0.0005	0.0056	0.0011	0.0010	0.0126	0.0026

Independence - Labor

Objective	GP Ensemble	SVR Gaussian	ARMA (AIC)	GP Ensemble	SVR Gaussian	ARMA (AIC)
	Ind	ependence	Day		Labor Day	
MSE	0.0580	35.3353	3.1954	0.0453	17.8265	0.2657
RMSE	0.2196	5.2498	1.7875	0.2015	4.0581	0.5154
MAE	0.1878	5.2441	1.4326	0.1687	4.0526	0.4218
MAPE	1.5770	42.8576	15.4015	1.3505	32.3218	3.5359
MAP	0.0307	0.4624	0.6398	0.0272	0.3484	0.1479
Theil	0.0015	0.0351	0.0156	0.0013	0.0261	0.0033

Good Friday - Memorial

	GP	SVR	ARMA	GP	SVR	ARMA
Objective	Ensemble	Gaussian	(AIC)	Ensemble	Gaussian	(AIC)
	G	ood Friday I	Day	N	lemorial Day	у
MSE	0.0800	3.1283	0.5346	0.0450	76.0419	0.0723
RMSE	0.2602	1.6171	0.7311	0.1976	8.0137	0.2689
MAE	0.2198	1.5874	0.5931	0.1631	8.0113	0.1980
MAPE	1.1963	8.6589	3.4616	1.3843	67.6102	1.6731
MAP	0.0241	0.1056	0.1445	0.0295	0.7090	0.0868
Theil	0.0008	0.0050	0.0020	0.0014	0.0574	0.0019
			0.0020			0.00.0

Main Conclusions from VSTLF

Analysis of Demand Load

- □ Linear Ensemble of GP
- □ Set of 5 different Kernels

Two stage Learning

- Individual GP
- Optimization of GP Ensemble

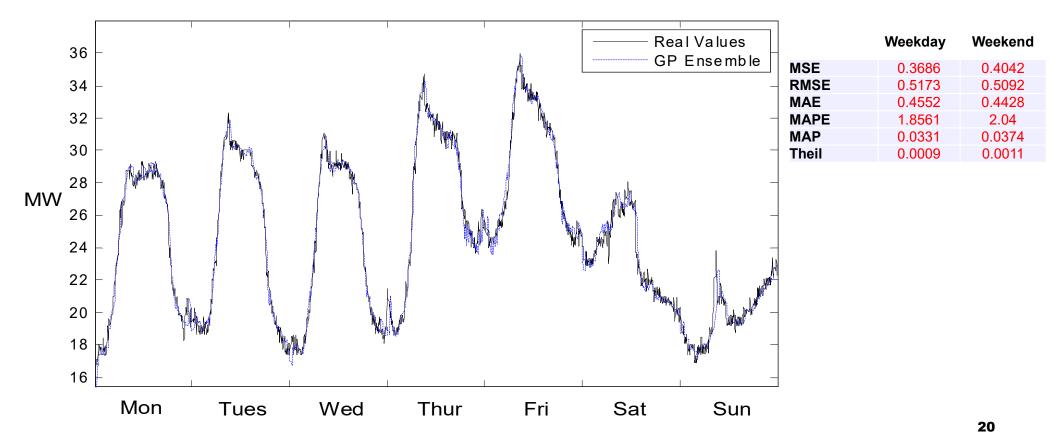
Multi-objective Problem

□ 6 different Objective (error measures)

Testing

- High Accuracy
 - ARMA (AIC)
 - SVR with Gaussian Kernel

Winter (January) Week Visualization



Critical Energy Applications:

National Security and Nuclear Nonproliferation

Nuclear Security and Nonproliferation Challenges

- Identify the Origins of Nuclear Materials (e.g., Forensics)
- Monitor Global Fissile Material Production and Accountability
- Monitor Nonproliferation Activities (e.g., Hidden Facilities)
- Counter Nuclear Smuggling
- Enhance International Safeguards
- Enhance Public Safety from Terrorist Attacks

Border Inspection

Artif. Intelligence: Challenges

Data Analysis from Radiation Sensors

Patterns of Interest

Data Analysis of Sensor Networks

Mobile sensors / Static Sensors

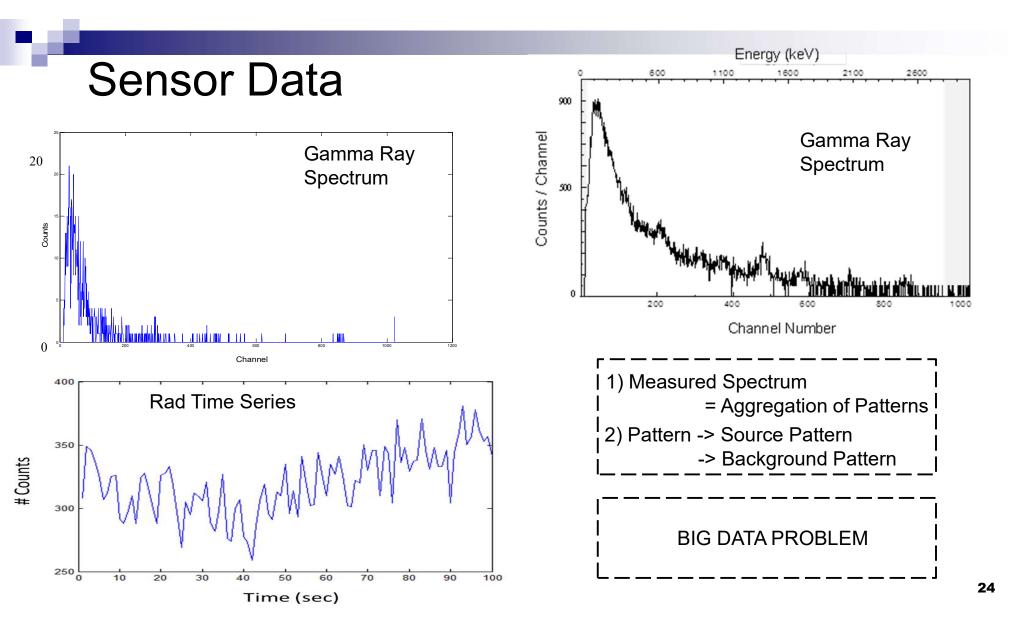
- Data Fusion and Decision Making
- Threat Identification

Support Decision Making

NYPD Officer with Rad Detector

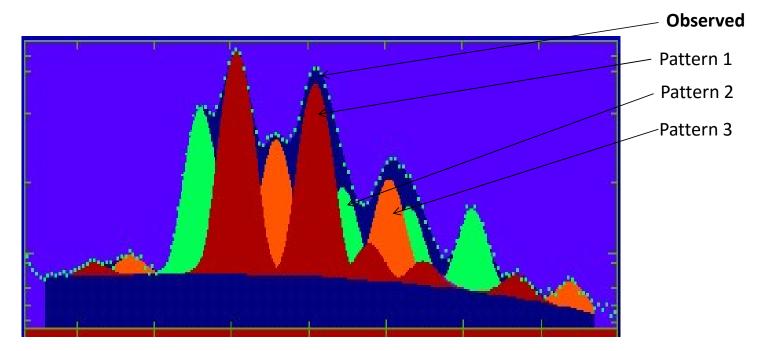
Monitoring for Radioactive Threats

<u>AI Solutions:</u> Expertise not needed Minimum Attention (less Fatigue)



Analysis of a Spectrum

- Signal analysis methodology principles
 - Spectrum Stripping/ Synthesis

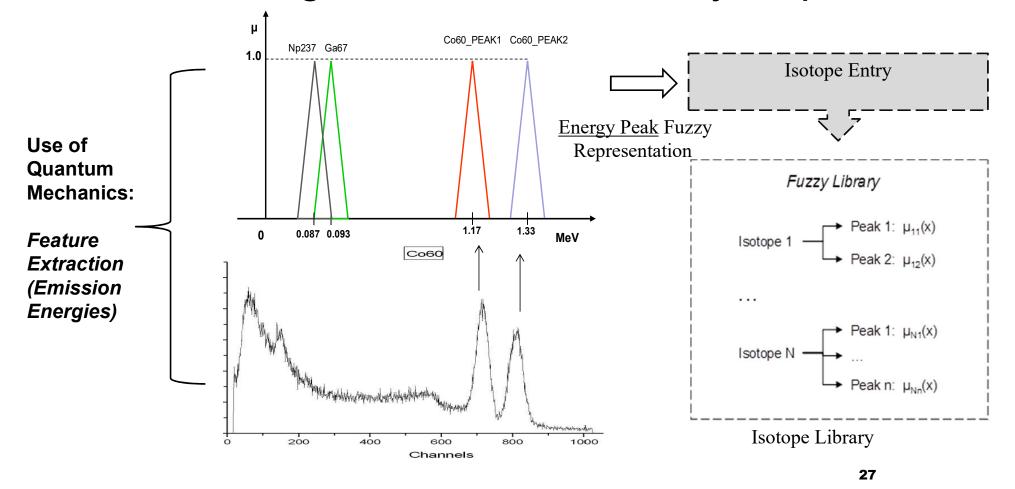


Analysis of Gamma Ray Signals *Fuzzy Logic Isotope Identifier*

Alamaniotis, M., "Data Interpretation and Algorithms," *Active Interrogation in Nuclear Security-Science, Technology, and Systems*, Book edited by I. Jovanovic and A. Erickson, Springer Nature, 2017, pp. 1-30.

Alamaniotis, M., Heifetz, A., Raptis, A., & Tsoukalas, L.H, "Fuzzy-Logic Radioisotope Identifier for Gamma Spectroscopy in Source Search," *IEEE Transactions on Nuclear Science*, Institute of Electrical and Electronic Engineers, vol. 60 (4), August 2013, pp. 3014-3024.

Machine Intelligence Solution: Fuzzy Representation



Machine Intelligence Solution: Fuzzy Inference

INPUTS

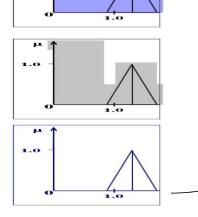
14

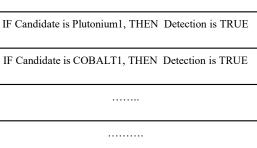
μ

1.0

1.0

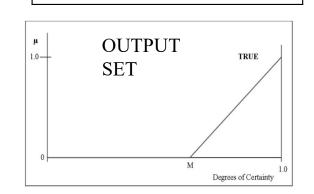
Feature Extraction from Measured Data

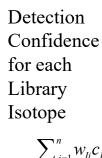


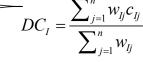


RULES

IF Candidate is U235_1, THEN Detection is TRUE







28

Future Research Directions

Smart Energy Systems

Machine Intelligence in

- Forecasting
- Integration of Renewables
- Intelligent Management of Power Grid
- Integration of Electricity with other forms of Energy
- Modeling/Predicting Consumer Behavior
- Smart Energy for Smart Cities

Nuclear Security

Intelligence in

- Smart Rad Sensor Networks
- Threat Identification
- Modeling of Background Radiation
- Data Interpretation
- Data Visualization
- Cybersecurity and Physical Impact

<u>Taxis</u>: Sensor Network in Urban Environments

Power Systems and Nuclear Security

Machine Intelligence

- □ Analysis of Power Grid Data
 - Enhancing Nuclear Security
 - Consumption Profiles of Nuclear Sites

Analysis of Grid Contextual Environments

Detection of Hidden Facilities

Summary and Conclusion

- Brief Bio
- Machine Learning in Critical Energy Applications
 - Power Systems
 - Learning Kernels for VSTLF
 - □ Nuclear Security
 - Fuzzy Analysis of Spectra
- Future Directions

Thank you for your Attention

Questions?

Discussion