Autonomous Energy Grid optimization

Steven Low

Watershed moment

Energy network will undergo similar architectural transformation that phone network went through in the last two decades to become the world's largest and most complex IoT

Electricity gen & transportation

They consume the most energy

Consume 2/3 of all energy in US (2014)

They emit the most greenhouse gases

■ Emit >1/2 of all greenhouse gases in US (2014)

To drastically reduce greenhouse gases

- Generate electricity from renewable sources
- Electrify transportation

Today's grid

Few large generators

~10K bulk generators, actively controlled

Many dump loads

■ 131M customers, ~billion passive loads

Control paradigm: schedule supply to match demand

■ Centralized, human-in-the-loop, worst case, deterministic

Wind and solar farms are not dispatchable

Many small distributed generations

Network of distributed energy resources (DERs)

EVs, smart buildings/appliances/inverters, wind turbines, storage

Control paradigm: match demand to volatile supply

■ Distributed, real-time feedback, risk limiting, robust

Opportunity: active DERs enables realtime dynamic network-wide feedback control, improving robustness, security, efficiency

Caltech research: distributed control of networked DERs

- Foundational theory, practical algorithms, concrete applications
- Integrate engineering and economics
- Active collaboration with industry

Autonomous energy grid

Computational challenge

nonlinear models, nonconvex optimization

Scalability challenge

billions of intelligent DERs

Increased volatility

in supply, demand, voltage, frequency

Limited sensing and control

design of/constraint from cyber topology

Incomplete or unreliable data

local state estimation & system identification

Data-driven modeling and control

real-time at scale

many other important problems, inc. economic, regulatory, social, ...

Relaxations of AC OPF

Dealing with nonconvexity

Realtime AC OPF

Dealing with volatility

Optimal placement

Dealing with limited sensing/control

Relaxations of AC OPF

dealing with nonconvexity

Bose (UIUC)

Chandy

Farivar (Google)

Gan (FB)

Lavaei (UCB)

Li (Harvard)

many others at & outside Caltech ...

Low, Convex relaxation of OPF, 2014 http://netlab.caltech.edu

Optimal power flow (OPF)

OPF is solved routinely for

- network control & optimization decisions
- market operations & pricing
- at timescales of mins, hours, days, ...

Non-convex and hard to solve

- Huge literature since 1962
- Common practice: DC power flow (LP)
- Also: Newton-Raphson, interior point, ...

min c(x) s. t. F(x) = 0, $x \le \overline{x}$

Optimal power flow

min	$\operatorname{tr}\left(CVV^{H}\right)$
over	(V,s,l)
subject to	$s_j = \operatorname{tr}\left(Y_j^H V V^H\right)$
	$l_{jk} = \operatorname{tr}\left(B_{jk}^{H} V V^{H}\right)$
	$\underline{S}_j \leq S_j \leq \overline{S}_j$
	$\underline{l}_{jk} \leq l_{jk} \leq \overline{l}_{jk}$
	$\underline{V}_j \leq V_j \leq \overline{V}_j$

gen cost, power loss

power flow equation

line flow

injection limits

line limits

voltage limits

- Y_i^H describes network topology and impedances
- S_j is net power injection (generation) at node j

Optimal power flow

min	$\operatorname{tr}\left(CVV^{H}\right)$
over	(V,s,l)
subject to	$s_j = \operatorname{tr}\left(Y_j^H V V^H\right)$
	$l_{jk} = \operatorname{tr}\left(B_{jk}^{H} V V^{H}\right)$
	$\underline{S}_j \leq S_j \leq \overline{S}_j$
	$\underline{l}_{jk} \leq l_{jk} \leq \overline{l}_{jk}$
	$\underline{V}_j \leq V_j \leq \overline{V}_j$

gen cost, power loss

power flow equation

line flow

injection limits

line limits

voltage limits

nonconvex feasible set (nonconvex QCQP)

- Y_j^H not Hermitian (nor positive semidefinite)
- C is positive semidefinite (and Hermitian)

Optimal power flow

OPF problem underlies numerous applications

Dealing with nonconvexity

Linearization

DC approximation

Convex relaxations

- Semidefinite relaxation (Lasserre hierarchy)
- QC relaxation (van Hentenryck)
- Strong SOCP (Sun)

Equivalent feasible sets

min
$$\operatorname{tr} CVV^H$$

subject to
$$\underline{s}_{j} \leq \operatorname{tr}\left(Y_{j}^{H}VV^{H}\right) \leq \overline{s}_{j} \quad \underline{v}_{j} \leq |V_{j}|^{2} \leq \overline{v}_{j}$$

Equivalent problem:

min

tr CW

subject to
$$\underline{s}_{j} \le \operatorname{tr}\left(Y_{j}^{H}W\right) \le \overline{s}_{j}$$
 $\underline{v}_{j} \le W_{jj} \le \overline{v}_{j}$

$$W \ge 0$$
, rank $W = 1$

convex in W except this constraint

quadratic in V

linear in W

Solution strategy

OPF:
$$\min_{x \in \mathbf{X}} f(x)$$

relaxation:
$$\min_{\hat{x} \in \mathbf{X}^+} f(\hat{x})$$

If optimal solution \hat{x}^* satisfies easily checkable conditions, then optimal solution χ^* of OPF can be recovered

Equivalent relaxations

Theorem

- Radial G: SOCP is equivalent to SDP ($v \subseteq w^+ \cong w_G^+$)
- \blacksquare Mesh G: SOCP is strictly coarser than SDP

For radial networks: always solve SOCP!

For radial networks, sufficient conditions on

- power injections bounds, or
- voltage upper bounds, or
- phase angle bounds

Exact relaxation

$$QCQP(C,C_k)$$

min
$$\operatorname{tr}\left(Cxx^{H}\right)$$

over
$$x \in \mathbb{C}^n$$

s.t.
$$\operatorname{tr}(C_k x x^H) \leq b_k \qquad k \in K$$

$$k \in K$$

graph of QCQP

$$G(C,C_k)$$
 has edge $(i,j) \Leftrightarrow$

$$C_{ij} \neq 0$$
 or $[C_k]_{ij} \neq 0$ for some k

QCQP over tree

$$G(C,C_k)$$
 is a tree

Exact relaxation

$QCQP(C,C_k)$

min $\operatorname{tr}(Cxx^H)$

over $x \in \mathbb{C}^n$

s.t.

$$\operatorname{tr}(C_k x x^H) \leq b_k$$

$$k \in K$$

Key condition

$$i \sim j$$
: $(C_{ij}, [C_k]_{ij}, \forall k)$ lie on half-plane through 0

Theorem

SOCP relaxation is exact for QCQP over tree

Implication on OPF

Not both lower & upper bounds on real & reactive powers at both ends of a line can be finite

SOCP is faster but coarser than SDP

IEEE test systems		SDP cost	MATPOWER cost
Syst.	$\operatorname{rank}(\overline{X}_0)$	J°	\overline{J}
9	1	5296.7	5296.7
30	1	576.9	576.9
118	1	129661	129661
14A	1	8092.8	9093.8
		•	

12.4% lower cost than solution from nonlinear solver MATPOWER

Potential benefits

Case study on an SCE feeder

- Southern California
- 1,400 residential houses, ~200 commercial buildings
- Controllable loads: EV, pool pumps, HVAC, PV inverters
- Formulated as an OPF problem, multiphase unbalanced radial network

peak load reduction: 8% energy cost reduction: 4%

Realtime AC OPF for tracking

Gan (FB)

Tang (Caltech)

Dvijotham (DeepMind)

OPF

min
$$c_0(y) + c(x)$$

over x, y
s. t.

controllable uncontrollable devices state

$$\min \quad c_0(y) + c(x)$$

over x, y

s. t.
$$F(x, y) = 0$$

power flow equations

$$\min c_0(y) + c(x)$$

over x, y

s. t.
$$F(x, y) = 0$$

 $y \leq \overline{y}$

$$x \in X := \{\underline{x} \le x \le \overline{x}\}$$
 capacity limits

power flow equations

operational constraints

Assume:
$$\frac{\partial F}{\partial y} \neq 0 \implies y(x) \text{ over } X$$

OPF

$$\min_{x} c_0(y(x)) + c(x)$$

s. t.
$$y(x) \le \overline{y}$$

 $x \in X := \{\underline{x} \le x \le \overline{x}\}$

<u>Theorem</u> [Huang, Wu, Wang, & Zhao. TPS 2016] For DistFlow model, controllable (feasible) region

$$\{x | y(x) \le \overline{y}, x \in X\}$$

is convex (despite nonlinearity of y(x))

Static OPF

min
$$f(x, y(x); \mu)$$

over $x \in X$

gradient projection algorithm:

$$x(t+1) = \left[x(t) - \eta \frac{\partial f}{\partial x}(t) \right]_{X}$$
 active control
$$y(t) = y(x(t))$$
 law of physics

Online (feedback) perspective

DER : gradient update x(t+1) = G(x(t), y(t))

$$x(t+1) = G(x(t), y(t))$$

cyber network

control x(t)

measurement, communication y(t)

Network: power flow solver y(t) : F(x(t), y(t)) = 0

$$y(t): F(x(t), y(t)) = 0$$

physical network

- Explicitly exploits network as power flow solver
- Naturally tracks changing network conditions

Drifting OPF

$$\min_{x} c_0(y(x)) + c(x)$$
s. t. $y(x) \le \overline{y}$

$$x \in X$$
static
OPF

$$\min_{x} c_{0}(y(x), \gamma_{t}) + c(x, \gamma_{t})$$
s. t. $y(x, \gamma_{t}) \leq \overline{y}$

$$x \in X$$
OPF

Drifting OPF

min
$$f_t(x, y(x); \mu_t)$$

over $x \in X_t$

Quasi-Newton algorithm:

$$x(t+1) = \left[x(t) - \eta (H(t))^{-1} \frac{\partial f_t}{\partial x} (x(t)) \right]_{X_t} \text{ active control}$$

$$y(t) = y(x(t)) \text{ law of physics}$$

$$y(t) = y(x(t))$$
 law of ph

Tracking performance

error :=
$$\frac{1}{T} \sum_{t=1}^{T} \left\| x^{\text{online}}(t) - x^*(t) \right\|$$

control error

Tracking performance

error :=
$$\frac{1}{T} \sum_{t=1}^{T} \left\| x^{\text{online}}(t) - x^*(t) \right\|$$

Theorem

error
$$\leq \frac{\varepsilon}{\sqrt{\lambda_M/\lambda_m} - \varepsilon} \cdot \frac{1}{T} \sum_{t=1}^{I} (\|x^*(t) - x^*(t-1)\| + \Delta_t) + \delta$$

avg rate of drifting

- of optimal solution
- of feasible injections

Tracking performance

error :=
$$\frac{1}{T} \sum_{t=1}^{T} \left\| x^{\text{online}}(t) - x^*(t) \right\|$$

Theorem

error
$$\leq \frac{\varepsilon}{\sqrt{\lambda_{M}/\lambda_{m}} - \varepsilon} \cdot \frac{1}{T} \sum_{t=1}^{T} (\|x^{*}(t) - x^{*}(t-1)\| + \Delta_{t}) + \delta$$

error in Hessian approx

Tracking performance

error :=
$$\frac{1}{T} \sum_{t=1}^{T} \left\| x^{\text{online}}(t) - x^*(t) \right\|$$

Theorem

error
$$\leq \frac{\varepsilon}{\sqrt{\lambda_{M}/\lambda_{m}} - \varepsilon} \cdot \frac{1}{T} \sum_{t=1}^{T} (\|x^{*}(t) - x^{*}(t-1)\| + \Delta_{t}) + \delta$$

"condition number" of Hessian

Tracking performance

error :=
$$\frac{1}{T} \sum_{t=1}^{T} \left\| x^{\text{online}}(t) - x^*(t) \right\|$$

Theorem

error
$$\leq \frac{\varepsilon}{\sqrt{\lambda_M/\lambda_m} - \varepsilon} \cdot \frac{1}{T} \sum_{t=1}^{T} (\|x^*(t) - x^*(t-1)\| + \Delta_t) + \delta$$

"initial distance" from $x^*(t)$

Implement L-BFGS-B

- More scalable
- \blacksquare Handles (box) constraints X

Simulations

■ IEEE 300 bus

Tracking performance

IEEE 300 bus

Tracking performance

IEEE 300 bus

Key message

Large network of DERs

- Real-time optimization at scale
- Computational challenge: power flow solution

Online optimization [feedback control]

- Network computes power flow solutions in real time at scale for free
- Exploit it for our optimization/control
- Naturally adapts to evolving network conditions

Examples

- Slow timescale: OPF
- Fast timescale: frequency control

Optimal placement dealing with limited sensing/control

Guo (Caltech)

Characterization of controllability and observability

- of swing dynamics
- in terms spectrum of graph Laplacian matrix

Implications on optimal placement of controllable DERs and sensors

set covering problem

Network model

swing dynamics:

$$-M_j \dot{\omega}_j = 1_{\mathcal{F}}(j) \hat{d}_j + 1_{\mathcal{U}}(j) d_j - P_j^m + \sum_{e \in \mathcal{E}} C_{je} P_e$$

$$\dot{P}_{ij} = B_{ij}(\omega_i - \omega_j)$$
 controllable DER
$$y_j = 1_{\mathcal{S}}(j) \omega_j$$
 frequency sensor

weighted Laplacian matrix

$$L = M^{-1/2}CBC^{T}M^{-1/2}$$

Algebraic coverage

spectral decomposition of L

$$L = Q\Lambda Q^T$$

eigenvectors of L

$$Q = \left[\beta_1 \cdots \beta_n\right]$$

algebraic coverage of bus j

$$cov(j) := \left\{ s \mid \beta_{sj} \neq 0 \right\}$$

Theorem

Swing dynamics is controllable if and only if

- \blacksquare L has a simple spectrum holds a.s.
- controllable DERs have full coverage

$$\bigcup_{j \in U} \operatorname{cov}(j) = \{ \text{all buses} \}$$

Theorem

Swing dynamics is observable if and only if

- \blacksquare L has a simple spectrum holds a.s.
- frequency sensors have full coverage

$$\bigcup_{j \in S} \operatorname{cov}(j) = \{ \text{all buses} \}$$

Optimal placement of DER & frequency sensors

- set covering problem
- always install sensors at buses with controllable DERs, and vice versa

Which choice provides controllability?

IEEE 39-bus
New England system

Which choice provides controllability?

(a) {1,2,3,4,5,6}

- (a) {1,2,3,4,5,6}
- (b) {1,18,13,8,29,33, 38}

- (a) {1,2,3,4,5,6}
- (b) {1,18,13,8,29,33, 38}
- (c) {35}

- (a) {1,2,3,4,5,6}
- (b) {1,18,13,8,29,33, 38}
- (c) {35}
- (d) {14,15,17,18}

- (a) {1,2,3,4,5,6}
- (b) {1,18,13,8,29,33, 38}
- (c) {35}
- (d) {14,15,17,18}

Application

IEEE 39-bus New England system

1pu step disturbance at bus 30

with local control at single bus 35

Relaxations of AC OPF

Dealing with nonconvexity

Realtime AC OPF

Dealing with volatility

Optimal placement

Dealing with limited sensing/control

