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Watershed moment

Energy network will undergo similar architectural
transformation that phone network went through
in the last two decades to become the world’s
largest and most complex loT

deregulation

> loT
Tesla: multi-phase AC started

1888 both started as natural monopolies 1980-90s

e Doth provided a single commodity —

both grew rapidly through two WWs
1876 9 picly throug 1980-90s
Bell: telephone deregulation
started

convergence
1969: DARPAnet ~ ——> ) |hternet



Electricity gen & transportation

Lawrence Li

Estimated U.S. Energy Use in 2014: ~98.3 Quads { National f_a&ﬁgﬂ,‘:{,e Agriculture
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Source:
USEPA

They consume the most energy
®m Consume 2/3 of all energy in US (2014)

They emit the most greenhouse gases
B Emit >1/2 of all greenhouse gases in US (2014)

To drastically reduce greenhouse gases
B Generate electricity from renewable sources
B Electrify transportation



Few large generators
®m  ~10K bulk generators, actively controlled

Many dump loads

B 131M customers, ~billion passive loads

Control paradigm: schedule supply to match demand
m Centralized, human-in-the-loop, worst case, deterministic



Future grid
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Distributed Generation

Wind and solar farms are not dispatchable
B Many small distributed generations

Network of distributed energy resources (DERS)
B EVs, smart buildings/appliances/inverters, wind turbines, storage

Control paradigm: match demand to volatile supply
m Distributed, real-time feedback, risk limiting, robust



active DERs introduce rapid random Opportunity: active DERs enables realtime
fluctuations in supply, demand, power quality dynamic network-wide feedback control,
increasing risk of blackouts improving robustness, security, efficiency

SMART GRID
A vision for the future — a network

Solar panels

* Foundational theory, practical algorithms, concrete
applications

* Integrate engineering and economics

« Active collaboration with industry
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Autonomous energy grid

Computational challenge

B nonlinear models, nonconvex optimization
Scalability challenge

m Dbillions of intelligent DERSs
Increased volatility

m in supply, demand, voltage, frequency
Limited sensing and control

B design of/constraint from cyber topology
Incomplete or unreliable data

B |ocal state estimation & system identification
Data-driven modeling and control

B real-time at scale

many other important problems, inc. economic, regulatory, social, ...

Ben Kroposki, 2007 https://www.nrel.gov/grid/autonomous-energy.html



Outline
Relaxations of AC OPF

® Dealing with nonconvexity

Realtime AC OPF

m Dealing with volatility

Optimal placement
B Dealing with limited sensing/control
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Relaxations of AC OPF

dealing with nonconvexity

"‘ h"ﬂﬁ

Bose (UIUC) Chandy  Farivar (Google) Gan (FB) Lavaei (UCB) Li (Harvard)

many others at & outside Caltech ...

Low, Convex relaxation of OPF, 2014
http://netlab.caltech.edu



&% Optimal power flow (OPF)

OPF is solved routinely for
B network control & optimization decisions
B market operations & pricing
B at timescales of mins, hours, days, ...

Non-convex and hard to solve
B Huge literature since 1962
B Common practice: DC power flow (LP)
B Also: Newton-Raphson, interior point, ...

min c(x) s.t. F(x)=0, x=<X




~% Optimal power flow

min tr (CVVH) gen cost, power loss
over (V,s,l )

subjectto s, = tr (YJHVVH) power flow equation

Hyr H\| 1
ljk — tr (BjkVV ) line flow
S, = 5. = S Injection limits

line limits

V. < IVjI < V| voltage limits

H . .
- Y, describes network topology and impedances

« 9 is net power injection (generation) at node j



~% Optimal power flow

min tr (CVVH) gen cost, power loss
over (V,s,l )

subjectto s, = tr (YJHVVH) power flow equation

[, = tr (B]IZVVH) line flow

. : injection limits
S, = 85 = S J

[

K = ljk < line limits

Ly

—J

V. < IVjI < ‘_/j voltage limits

nonconvex feasible set (nonconvex QCQP)
. YJ.H not Hermitian (nor positive semidefinite)
« (¢ s positive semidefinite (and Hermitian)



Optimal power flow

OPF problem underlies numerous applications
* nonlinearity of power flow equations =» nonconvexity

P, Genl ] Gen2 P,
= jl.1 o~
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&% Dealing with nonconvexity

Linearization
B DC approximation

Convex relaxations
B Semidefinite relaxation (Lasserre hierarchy)

B QC relaxation (van Hentenryck)
B Strong SOCP (Sun)




~% Equivalent feasible sets

X (SOCP)

. H o
min tr CVV £ =x

subject to sjs[tr (Y]H H)}s Sj V< IV].I2 v,

\ quadratic in V

linear in W

Equivalent problem:
min tr CW /

subject to [gj <ftr (Y].HW)SEJ- v, =W, 517].]

W=z=0, rank W =1 convex in W
except this constraint

IA




&% Solution strategy

OPF: min f(x)

xeX

relaxation: min f (%)
xeX”

If optimal solution X~ satisfies easily checkable conditions,
then optimal solution x~ of OPF can be recovered



A\
</V\} —— ——
W — W
Theorem

B Radial G: SOCP is equivalent to SDP (vcw=w;)
B Mesh G: SOCP is strictly coarser than SDP

For radial networks: always solve SOCP !



&9 Exact relaxation

For radial networks, sufficient conditions on
B power injections bounds, or
B voltage upper bounds, or
B phase angle bounds



=% Exact relaxation

QCQP (C.C,)
min tr(CxxH)
over x e C”
S.t. tr(CkxxH) = b ke K

graph of QCQP
G(C,C,) hasedge (i,j) <
C,=0 or [C,] =0 forsome k

)

QCQP over tree
G(C,C,) isatree



Im

=% Exact relaxation

QCQP (¢.C,) ‘

min tr (CxxH ) . o 5

over xe(C”

S.t. tr(CkxxH) = b ke K

Key condition
i~ (Cl.j,[Ck]ij, Vk) lie on half-plane through 0

Theorem
SOCP relaxation is exact for
QCQP over tree Bose et al 2012, 2014

Sojoudi, Lavaei 2013




lower bounds

_[(I)j]jk onp;,q;,Pi-Y9x

upper bounds

on pi,ql‘apk7qk [(I)k]jk

Not both lower & upper bounds on real & reactive powers at both ends
of a line can be finite



Real Power Reactive Power
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power flow
solution X

« Relaxation is exact if X and Y have same

Pareto front
« SOCP is faster but coarser than SDP

Bose, Low, Teeraratkul, Hassibi TAC 2015



Potential benefits

IEEE test SDP  MATPOWER
systems cost cost
Syst. rank(X ) J° J
9 1 5296.7  5296.7
30 1 576.9 576.9
118 1 129661 129661
14A 1 3092.8 9093.8
A\ J
g

12.4% lower cost than solution from
[Louca, Seiler, Bitar 2013] nonlinear solver MATPOWER



Potential benefits

Case study on an SCE feeder
B Southern California
m 1,400 residential houses, ~200 commercial buildings
B Controllable loads: EV, pool pumps, HVAC, PV inverters
B Formulated as an OPF problem, multiphase unbalanced radial

network
baseline optimized

4000 4000 =

— 3500 | I base - PV
35007 [ base - PV —1

o s000 1| ool
3000 | [ pool I HVAC

e 2500+

(kW)

5 2000 5 2000+

Real Pow
=
o
o

1000

peak load reduction: 8%
energy cost reduction: 4%

o
I=3
=3

o




Realtime AC OPF

for tracking

Gan (FB) Tang (Caltech) Dvijotham (DeepMind)

See also: Dall’Anese et al, Bernstein et al, Gan & L, JSAC 2016
Hug & Dorfler et al, Callaway et al Tang et al, TSG 2017
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min c¢,(y)+c(x)

over Xx, Yy

S. t.

controllable uncontrollable
devices state
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min c¢,(y)+c(x)

Over x, y
s.t. F(x,y)=0 power flow equations



S\TUTE
SR
~ (@)
z
O 1891 W 5}
J ~

QO

min c¢,(y)+c(x)

over Xx, Yy
s.t. F(x,y)=0 power flow equations
y<sy operational constraints

xe X = {z <= X< )_C} capacity limits

Assume: £;:sO = y(x) over X



OPF

min ¢,(y(x))+c(x)

s.t. y(x)=sy
xe X = {gsxs?c}

Theorem [Huang, Wu, Wang, & Zhao. TPS 2016]
For DistFlow model, controllable (feasible) region

{x‘y(x) =y, xE X}

is convex (despite nonlinearity of y(x))
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min  f(x,y(x); w)
over x&X

gradient projection algorithm:

of

x(t+1) x(1)— T]

(t) active control

y(t)

Y(x(t)) law of physics

[Gan & Low, JSAC 2016]



&9 Online (feedback) perspective

DER : gradient update cyber

x(t+1) = G(x(1), y(2)) network

measurement,

control communication

x(Y) (1)
Network: power tflow solver |

physical
Y(f) : F(X(t), y(t)) — O network

Explicitly exploits network as power flow solver
Naturally tracks changing network conditions
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min ¢, (y(x))+c(x) )
X B static
s.t. y(x)=Yy > OPF
xe X
7
. ™
min ¢, (y(x),y,)+c(x,y,)
X drifting
s.t. y(xy)<y " OFF
xe X
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min  f,(x, y(x); 4,
over x&X,

Quasi-Newton algorithm:

x(t+1)

y(t)

X(1) - n(H(r))‘“;—f;(x@))

y(x(2))

active control
Xt

law of physics

[Tang, Dj & Low, 2017]



control error




Theorem

CITOI =

| ~ . .
NEw /S)Lm —g.T;(Hx () —x (t—l)H+AI)+5

\ J
Y

avg rate of drifting
» of optimal solution
« of feasible injections




&) Tracking performance

error = %i onnhne (t)—x (t)H
r=1
Theorem
error = \/KM /EJLm oy : 711:21(Hx*(t)—x*(t—l)H+AI)+c5

|

error in Hessian approx



&) Tracking performance

error = %i onnhne (t)—x (t)H
r=1
Theorem
error = \/KM /EJLm oy : 711:21(Hx*(t)—x*(t—l)H+AI)+c5

|

“condition number”
of Hessian



&) Tracking performance

error = %i onnhne (t)—x (t)H
r=1
Theorem
error = \/KM /SJL _g°;:El(Hx*(t)—x*(t—l)H+At)+c5

|

“initial distance” from x ()



&% Implementation

Implement L-BFGS-B

B More scalable
B Handles (box) constraints X

Simulations
B JTEEE 300 bus
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Key message

Large network of DERs

B Real-time optimization at scale
B Computational challenge: power flow solution

Online optimization [feedback control]

B Network computes power flow solutions in real time at
scale for free

B Exploit it for our optimization/control
B Naturally adapts to evolving network conditions

Examples
B Slow timescale: OPF
B Fast timescale: frequency control



Optimal placement

dealing with limited sensing/control

Guo (Caltech)

Guo & Low CDC 2017



~% Summary

Characterization of controllability and observability
B of swing dynamics
B in terms spectrum of graph Laplacian matrix

Implications on optimal placement of controllable
DERs and sensors
B set covering problem



=% Network model

swing dynamics:

~ Moy =17 (j)d; + 1u(j)d; — " + Y CjePe
ect

1] ZJ( 1 J) controllable DER

Yi = 18(j)wj ‘ frequency sensor

weighted Laplacian matrix
L=M1'2CBCTM-1/?



Ky Algebraic coverage

spectral decomposition of L

L =QAQT

eigenvectors of L

Q = [/31 o /J)n]
algebraic coverage of bus j

cov(j):= {s ‘ b, # O}



&7 Controllability

Theorem

Swing dynamics is controllable if and only if

B /[ has a simple spectrum  holds as.
B controllable DERs have full coverage

U cov(j) = {all buses}
jeUu



&7 Observability

Theorem

Swing dynamics is observable if and only if

B [ has a simple spectrum  holds a.s.
B frequency sensors have full coverage

U cov()) = {all buses}
JjES



=3 Application

Optimal placement of DER & frequency sensors

B set covering problem

B always install sensors at buses with controllable DERs,
and vice versa



Example 2 - Control Coverage

* Which choice provides controllability?
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&% Example 2 - Control Coverage

* Which choice provides controllability?
30 96_37 E (a) {112;3;415;6}
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&% Example 2 - Control Coverage

* Which choice provides controllability?
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Example 2 - Control Coverage

* Which choice provides controllability?
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“% Example 2 - Control Coverage

* Which choice provides controllability?
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Example 2 - Control Coverage

* Which choice provides controllability?
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Summary
Relaxations of AC OPF

® Dealing with nonconvexity

Realtime AC OPF

m Dealing with volatility

Optimal placement
B Dealing with limited sensing/control
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