THE CORTICAL INTERFACE BETWEEN VISION AND LANGUAGE

HOW DO WE UNDERSTAND LANGUAGE?

"Close your eyes and let the word paint a thousand pictures..."

NATURAL LANGUAGE EXPERIMENT

Huth, de Heer, Griffiths, Theunissen, & Gallant. Nature (2016)

FURL RESPONSES

Low Resp.

High Resp.

ramadan and all pagan festivals of that season of winter

Kay et al. *Nature* (2008), Nishimoto et al. *Current Biology* (2011), Huth et al. *Neuron* (2012), Huth et al. *Nature* (2016), etc.

SIMPLEST MODEL:

WORD MODEL PERFORMANCE: MEDIOCRE

IMPROVED MODEL:

similar responses to words with similar meanings

Distributional hypothesis:

"You shall know a word by the company it keeps" J. R. Firth (1954)

Transforms analogies into vectors!

Captures structure of the world!

IMPROVED MODEL:

similar responses to words with similar meanings

SEMANTING POR **IMPROVED MODEL:** REPRESENTATIONAL SHALLARIT B ANA & SSprior stay tuned:

Nuñez, Huth, Oliver, & Gallant (2018?)

SEMANTIC MODEL PERFORMANCE: EXCELLENT

WORD MODEL PERFORMANCE: MEDIOCRE

SEMANTIC MODEL IS BETTER EVERYWHERE

Word

SEMANTIC MODEL IS BETTER EVERYWHERE

These brain areas

MODEL INTERPRETATION

What information is represented in each voxel?

MODEL INTERPRETATION

emotions politician taught community advicecounselor intellectualsir reasoned humor^{scientist}kindly opinion political discussionspeakingaback genuinely remarks reading politicsreligious anger biology dislikepeople's discussed fellow appreciated culture educated arrogant rightly pope encourage chaplain response colleagues offended politemoral recognize argue enthusiasm remark

Lower response

twice square stacked below each two dozen resulting nearestyards nearly mileseight dozen resulting nearestyards nearly mileseight finishes circular month thirty-five single total metres mounted wreckage days excess steep block passengers eleven pair mm dome placed highest

Higher response

MAPS ARE CONSISTENT ACROSS SUBJECTS

LANGUAGE VS. VISION

EXPERIMENTS

month

month week hou parl building location

woman

child

Visual fMRI data

2h natural movies from Hollywood movie trailers

ocean cliff

Language fMRI data

2.5h narrative stories from The Moth Radio Hour

"...she was removing photographs from the walls and placing them in little piles around the house..."

CORRELATION BETWEEN LANGUAGE AND VISION

0.5

CORRELATION BETWEEN LANGUAGE AND VISION

BORING

0.5

0.0

gallantlab.org/huth2016

ONE CATEGORY: PLACES

ONE CATEGORY: PLACES

Subject 2

Subject 6

Subject 3

LANGUAGE VS VISION

* what about other categories?

Subject 2
BODIES

Subject 2 FACES

GENERAL PROPERTY!

Sara Popham

Do visual & language cortex form a *single, contiguous cortical map?*

Could this explain **why** language cortex is organized the way it is?

QUESTIONS

- * Which came first? Does the organization of one follow the other?
 - * Studying language maps in congenitally blind subjects could help answer this!

OUESTIONS 51H

voxel [20,67,66] left model performance: 0.269 (p=0.000) Not b

000) Not bad, pretty reliable

IPS

IPS

IPSs

M1H

М

51M

PrinS

* What about other modalities? Somatosensation?

brittle
smooth
tightly crushed
heavier
blades flesh thing
trengt sking
bare limbs sking
bladejaggedbely
ibaggedbelge
baggedbelge
baggedbelge

CASEFORGE with James Gao

caseforge.com

PYCORTEX

with James Gao & Mark Lescroart

* Fast geodesic distances!* WebGL!

* Flatmaps!

pycortex.org

CREDITS

Wendy de Heer Sara Popham Anwar Nuñez Shinji Nishimoto

Frédéric Theunissen Tom Griffiths Jack Gallant THANKS!