
Cherry-Picking Control Nodes and Sensors in

Dynamic Networks

Mixed-Integer Programming, Heuristics, Challenges

Ahmad F. Taha, with Sebastian Nugroho, Nikolaos Gatsis, Ram Krishnan

March 2, 2018

Electrical and Computer Engineering, UT San Antonio

0/30

Introduction, Motivation

0/30

1/30

Ubiquity of Sensors & Actuators in Cyber-Physical Systems

• Sensors and actuators∗ (SaA) are ubiquitous in CPSs

• By 2050, we’ll have tens of billions of SaAs between smart grids,

transportation networks, and water distribution networks

• How to activate/deactivate SaAs depending on the cyber-physical

state of the infrastructure?

• How to drive a network from one state to another via real-time SaA

selection?

∗Actuators and control nodes have the same meaning—actuators is an old word.

2/30

SaA Selection Applications

Smart Power Grids

• Actuator selection: distributed

energy resources

• Sensor selection: smart meter and

PMU data

Water Distribution Networks

• Actuator selection: opening/closing

valves, releasing contamination

• Sensor selection: managing smart

mobile water sensors

Transportation Networks

• Traffic light control, EV charging

Genetic Regulatory Networks

• Choose genes to measure

3/30

SaA Selection Problem is Very Diverse

• Different perspectives for the sensor/actuator selection problem

• Planning problems (years–decades as time horizon) focused on SaA

selection/placement

• Operation problems (minutes–days)

• Real-time control (msecs–hours)—most interests, lots of interest

• Renewed interest in the context of networks—not only control-theory

• Research objective: Focusing on the time-varying sensor/actuator

selection in dynamic networks

* Figure out a general framework to deal with this problem

• Most literature focuses on simple linear networks, ignores

nonlinearity, disturbances, time-varying nature of networks

4/30

Uncertain CPS Model

Time-Varying Uncertain CPS Model

ẋ(t) = Ajx(t) + B j
uu(t) + B j

ww(t) + B j
f f (x(t)),

y(t) = C jx(t)(t) + D j
uu(t) + D j

vv(t)

• x ,u, y denote the state, control input, and measured output

• w and v are the unknown inputs such as:

– disturbances, parametric uncertainty, data attacks, sensor faults

• CPS has a total of N subsystems, with a total of nx states, nu
control inputs, ny outputs

• j is the time-period

• Dynamics are faster than the change in the CPS topology across j

5/30

CPS Model with Sensor and Actuator (SaA) Selection

Time-Varying SaA Selection Model

CPSDynamics : ẋ(t) = Ajx(t) + B j
uΠ

ju(t) + B j
ww(t) + B j

f f (x(t))

y(t) = ΓjC jx(t) + D j
uu(t) + D j

vv(t)

• Γj and Πj are binary variables for the SaA selection

– Πj = blkdiag(πj
1Inu1

, . . . , πj
N InuN) places vector πj in a block

diagonal matrix

• Objective: Find the optimal combination of Γj and Πj such that

the system obeys certain physical properties, dynamic metrics

– Common Metrics: minimum energy, robustness, boundedness,

asymptotic stability

6/30

High-Level Research Problem

Problem Formulation

minimize

Tf∑
j=1

{
cπ(πj) + cγ(γj) + CtrlObjj + EstObjj

}
subject to CPSDynamics

πj ∈ A ⊂ {0, 1}N ,γj ∈ S ⊂ {0, 1}N

ControlConstraints(πj)

EstimationConstraints(γj)

• CtrlObj,EstObj: Quantify the needed estimation/control metrics

• A,S represent logistic constraints on SaA selection

• Control and estimation constraints are often derived from

Lyapunov-like inequalities, yielding SDPs

• Literature is rich with formulations for Est/Ctrl problems as SDPs

Problem Formulation

6/30

7/30

Some Background

• Dynamic system consisting of N nodes:

ẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t)

• Physical state: x(t) ∈ Rn, control input: u(t) ∈ Rm, sensors data:

y(t) ∈ Rp; n > m, n > p

• Dynamic network is unstable; Re[λi (A)] > 0

• Control objective: stabilize the network using output measurements

• Objective: Design an output feedback controller

u(t) = Fy(t)

such that closed-loop system is stable

• Closed loop dynamics:

ẋ(t) = Ax(t) + Bu(t) = Ax(t) + BFy(t) = (A + BFC)x(t)

8/30

Background

Dynamic network with output feedback control: ẋ(t) = (A + BFC)x(t)

• Nonconvex feasibility problem:

find F , subject to eig(A + BFC) < 0

• Above problem ≡ to solving nonconvex bilinear matrix inequalities:

BMI: find F ,P � 0

subject to A>P + PA + C>F>B>P + PBFC ≺ 0

• When is BMI solvable? It’s an open problem—collaborations?

• But: for sure need PBH test to hold

Popov-Belevitch-Hautus (PBH) Tests

For all unstable eigenvalues λi of A (wi , vi are left/right evectors of A)

rank
[
A− λi I B

]
= n, OR w>i B 6= 0

rank

[
A− λi I

C

]
= n, OR Cvi 6= 0

9/30

BMI Posed as an LMI

• Don’t even try solve the BMI if PBH test is not satisfied

• Luckily, we can solve linear matrix inequalities (LMI):

LMI: find M ,N ,P

subject to A>P + PA + C>N>B> + BNC ≺ 0

BM = PB,P � 0

then compute F = M−1N

• This guarantees that A + BFC is stable

• Caveat: LMI only sufficient but still good enough

• Other approach: successive convex approximations for BMIs

10/30

SaA Selection in Linear Dynamic Networks

• Now, let’s consider the SaA selection with output feedback control

• Binary variables: γi ∈ {0, 1}, πi ∈ {0, 1}; network dynamics:

ẋ(t) = Ax(t) + BΠu(t)

y(t) = ΓCx(t),

• Selecting minimal # of SaA to stabilize dynamic networks:

Monster: min
N∑

k=1

πk + γk

s.t. A>P + PA + C>ΓN>ΠB> + BΠNΓC ≺ 0

BΠM = PBΠ,P � 0

Φ

[
π

γ

]
≤ φ←− LogisticConstraints

π ∈ {0, 1}N , γ ∈ {0, 1}N

• Monster: mixed-integer nonlinear matrix inequalities (MI-NMI)

Solving Monster, Inc—Method 1

10/30

11/30

Dealing with Monster

• Nonconvex terms in Monster:

BΠNΓC , BΠM = PBΠ

• Best thing we can do is to transform MI-NMI to MI-SDP

• Since Π and Γ are diagonal matrices with binary values, we have:

(ΠNΓ)ij =

{
Nij , if πi ∧ γj = 1

0, if πi ∧ γj = 0

• Big-M method comes handy here: for large L1, above rule implies if

{πi , γj} = {1, 1}, then Nij = Θij ; Θij = 0 otherwise

• Hence, we can write

|Θij | ≤ L1πi

|Θij | ≤ L1γj

|Θij −Nij | ≤ L1(2− πi − γj),

12/30

Dealing with Monster—2

• We still have to deal with: BΠM = PBΠ

• Using similar ideas (but a bit more complicated derivation), we can

prove that:

BΠM = PBΠ

is equivalent to:

 |Mij |
|Ωij |

|Mij −Ωij |

 ≤ L2

1 0 1 −1

1 1 0 −1

2 −1 −1 1

1

πi
πj

|πi − πj |

|Mij −Ωij | ≤ L2(1− πi), Ω = (B>B)−1B>PB

13/30

Approach 1: Being Clever with Optimization

Theorem—For large L1 & L2 Monster ≡ Beast†, Beast is MI-SDP

Beast: min
N∑

k=1

πk + γk

s.t. A>P + PA + C>ΘB> + BΘC ≺ 0 |Θij |
|Θij |

|Θij −Nij |

 ≤ L1

0 1 0

0 0 1

2 −1 −1

 1

πi

γj

 |Mij |
|Ωij |

|Mij −Ωij |

 ≤ L2

1 0 1 −1
1 1 0 −1
2 −1 −1 1

1

πi

πj

|πi − πj |

|Mij −Ωij | ≤ L2(1− πi), Ω = (B>B)−1B>PB

Φ

[
π

γ

]
≤ φ, π ∈ {0, 1}N , γ ∈ {0, 1}N

†I suppose that Monsters are more difficult to deal with than Beasts. I suppose.

14/30

Solving Beast

• Well, now we have MI-SDP which is much easier to deal with than

MI-NMIs

• But MI-SDPs are still messy—I mean, even SDPs are messy

• MI-SDPs can be solved using branch-and-bound algorithms

• We struggled with Beast

* Very few solvers in the market that are easy to interface with

* Yalmip’s MI-SDP solver is the only high-level one‡

* Yalmip’s BnB can take ages for even smaller networks with N < 20

• Also, any MI-SDP solver will scale so poorly with number of nodes

• Maybe cutting plane methods will perform better

• Bottom line: problem is still very hard

‡Is it? Other solvers require bringing the SDP to a minimalist form.

Solving Monster—Method 2

14/30

15/30

Method 2 to Solve Monster

• We developed another method to solve Monster

• Idea is based, in a way, on binary search algorithms

• First, recall the main complexity:

LMI: A>P + PA + C>ΓN>ΠB> + BΠNΓC ≺ 0, BΠM = PBΠ

• Main idea: if a fixed binary combination of {Π,Γ} is feasible for

the LMI above, most likely it’s sub-optimal—discard similar

combinations

• If a binary combination {Π,Γ} is infeasible for the LMI, discard

many similar combinations

16/30

What Combinations to Discard?

LMI: find M ,N ,P � 0

subject to A>P + PA + C>ΓN>ΠB> + BΠNΓC ≺ 0

BΠM = PBΠ,P � 0

Π,Γ are not variables now

• Alright then, but why and how can you discard combinations?

• Lemma—If a fixed combination {Π,Γ} yields

infeasible LMI, then deactivating one or more SaA from

{Π,Γ} also yields an infeasible LMI

• Similarly, if a combination is feasible, then activating one or more

SaA yields also feasible, but now sub-optimal solution to Monster

• Given this, one can discard many combinations

17/30

Binary Search Algorithm to Solve Monster

• Sp: database of all candidate binary combinations of {Π,Γ}
satisfying logistic constraints at iteration p

• Sp: optimal combination at iteration p

• # of active SaA: H(S) ,
∑N

k=1 πk + γk

18/30

Example

• Dynamic network of 2 nodes, 1 input, 1 output for each node

• Logistic constraint: 1 ≤
∑N

k=1 πk +γk < 4; S can be constructed as:

S =
{

(1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1),

(1, 1, 0, 0), (1, 0, 1, 0), (1, 0, 0, 1), (0, 1, 1, 0),

(0, 1, 0, 1), (0, 0, 1, 1), (1, 1, 1, 0), (1, 1, 0, 1), (1, 0, 1, 1), (0, 1, 1, 1)
}
.

• Let (1, 0, 0, 1) be the starting combination; assume LMI is infeasible

for this combination

• Discard (1, 0, 0, 0) and (0, 0, 0, 1); updated candidate set:

S2 =
{

(0, 1, 0, 0), (0, 0, 1, 0), (1, 1, 0, 0), (1, 0, 1, 0), (0, 1, 1, 0), (0, 1, 0, 1),

(0, 0, 1, 1), (1, 1, 1, 0), (1, 1, 0, 1), (1, 0, 1, 1), (0, 1, 1, 1)
}
.

• New candidate: (0, 1, 0, 1); assume LMI is feasible now, updated set:

S3 =
{

(0, 1, 0, 0), (0, 0, 1, 0)
}
.

19/30

Main Result

• Theorem—Algorithm 1 returns an optimal solution to

Monster

• We need Lemma 1 to prove the theorem

• Would this perform better than MI-SDPs and BnB?

• You still have to solve LMI at each iteration

• Alternative: Instead of solving LMI at each iteration, use PBH test

• Check if every combination satisfies the test; discard combinations

• Challenge: computing evectors/evalues for large-scale matrices

Solving Monster—Method 3

19/30

20/30

We Want Something Faster

• The previous algorithm requires an offline database of all feasible

binary combinations

• For large-scale networks, the database might require TBs of storage

• Alternative: learn in a smart way the binary combinations we should

not test

• Then, apply Algorithm 1 without requiring the database

• Things are tricky here, because this heuristic won’t return optimal

solution

21/30

Definitions for the Heuristic

• W : set comprising all binary combinations that do not satisfy the

logistic constraint

• All elements in W do not need to be known

• wp, w̄p: required min./max. # of activated SaA such that any

candidate Sp must satisfy wp ≤ H(Sp) ≤ w̄p

• In contrast with Algorithm 1, the heuristic constructs and updates a

infeasible binary SaA set

• Z: Forbidden Set

• Since W ⊆ Z, initialize Z by W
• At each iteration of the heuristic, randomly generate S /∈ Z while

updating wp, w̄p and Z—call this procedure GenRandComb

• This procedure is computationally cheap

22/30

Algorithm 2

1. Let p denote the iteration index and q = d(w + w̄)/2e denote the

desired number of activated SaA for the candidate S such that

H(S) = q

2. S(q)
p : candidate at iteration p with q activated SaA

3. GenRandComb(S(q)
p) /∈ Z

4. Check if this combination yields a feasible LMI: if it does, discard all

suboptimal combinations by updating Z; otherwise also update Z
and choose a different starting point wp, w̄p

5. Run this algorithm with thresholds and max. iterations

Numerical Tests

22/30

23/30

Numerical Tests: Series Mass-Spring Systems

ẋ(t) = Ax(t) + Bu(t), y(t) = Cx(t), u(t) = Ky(t)

A =

[
ON×N IN

T ON×N

]
,B =

[
ON×N

IN×N

]
,C = I2N

• States are position & velocity of each mass

• We choose the following linear constraint on the number of

actuators:
N∑
i=1

πi ≥ floor(N/4)

• Objective: minimal total # of activated SaAs given that

A + BΠFΓC , the closed loop system, is stable

24/30

Numerical Tests

Recall that we want to solve Moster. The methods we test are:

• Beast—a mixed-integer SDP: MI-SDP

• Binary search algorithm (Algorithm 1): BSA-SDP

• Algorithm 1 with PBH test: BSA-PBH

• Heuristic with SDP: HEU-SDP

• Heuristic with PBH test: HEU-PBH

Extensions, Interesting Problems

24/30

25/30

Extensions to Time-Varying Selection

• Suppose now that the network topology is changing:

ẋ(t) = Ajx(t) + B jΠju(t)

y(t) = ΓjC jx(t),

• Common problem in dynamic networks

• Minimal # of SaAs to stabilize dynamic networks for all

time-periods j :

min
∑
k,j

πj
k + γjk

s.t. Aj>P + PAj + C j>ΓjN j>ΠjB j> + B jΠjN jΓjC j ≺ 0

B jΠjM j = PB jΠj ,P � 0

Φj

[
πj

γ j

]
≤ φj

πj ∈ {0, 1}N , γ j ∈ {0, 1}N

26/30

Example of SDP Formulations of Control Problems

Linear Quadratic Regulator (LQR) Control

min J = E
∫ ∞
t0

x(τ)Qx(τ) + u(τ)Ru(τ)dτ

s.t. ẋ(t) = Ax(t) + Buu(t) + w(t)

w(t) ∼ N (0,W)

is equivalent to:

min
S,Y

trace(WS−1)

s.t.

AS + SA> + BuY + Y>B>u S Y
S −Q−1 0

Y> 0 −R−1

 � O

Solve the SDP, then compute the optimal state-feedback controller that

minimizes J∗

u(t) = −R−1B>u S−1x(t).

27/30

Example of SDP Formulations of Control Problems

Linear Quadratic Regulator (LQR) Control with Actuator Selection

min J = E
∫ ∞
t0

x(τ)Qx(τ) + u(τ)Ru(τ)dτ

s.t. ẋ(t) = Ax(t) + BuΠu(t) + w(t)

w(t) ∼ N (0,W),Π ∈ {0, 1}

is equivalent to:

min
S,Y ,Π

trace(WS−1) +
∑
k

Πk

s.t.

AS + SA> + BuΠY + Y>ΠB>u S Y
S −Q−1 0

Y> 0 −R−1

 � O

Solve the MI-BMI, compute optimal state-feedback controller:

u(t) = −R−1ΠB>u S−1x(t).

28/30

Other Control Metrics: Robustness to Unknown Inputs

L∞ Control as an SDP

We want to minimize ||z(t)||∞
||w(t)||∞ ; solve this SDP

min ζ

s.t.

AS + SA> + 2αS
−BuZ − Z>B>u Bw

B>w −2αI

 � O

−S O SC>z
O −I D>wz

CzS Dwz −ζI

 � O

• Obtain K = ZS−1; use

feedback control

u(t) = Kx(t)

• This minimizes impact of

w(t) on z(t)

• ζ is the control index

guaranteeing that

‖z(t)‖ ≤
√
ζ‖w(t)‖ ∀ t

29/30

L∞ Control with Actuator Selection

• For this system:

ẋ(t) = Ax(t) + BuΠu(t) + Bww(t)

z(t) = Czx(t) + Dwzw(t)

the co-design problem of L∞ controller and actuator selection is

nonconvex with mixed-integer bilinear matrix inequalities (MIBMI):

f ∗ = min
S,Z ,ζ,Π

ζ + α>π π

s.t. AS + SA> + 2αS
−BuΠZ − Z>ΠB>u Bw

B>w −2αI

 � O

−S O SC>z
O −I D>wz

CzS Dwz −ζI

 � O

Π ∈ A ⊂ {0, 1}N

• απ: actuators weights; A: actuator logistic constraints

• Relaxing integrality constraints to box yields a lower bound L∗

30/30

Discussion on Applications

• Applications in smart power grids

• Water distribution systems

• Contamination control in drink water networks

• Transportation networks

• Final remarks

	Introduction, Motivation
	Problem Formulation
	Solving Monster, Inc—Method 1
	Solving Monster—Method 2
	Solving Monster—Method 3
	Numerical Tests
	Extensions, Interesting Problems

