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Introduction, Motivation
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Ubiquity of Sensors & Actuators in Cyber-Physical Systems

e Sensors and actuators® (SaA) are ubiquitous in CPSs

e By 2050, we'll have tens of billions of SaAs between smart grids,
transportation networks, and water distribution networks

e How to activate/deactivate SaAs depending on the cyber-physical
state of the infrastructure?

e How to drive a network from one state to another via real-time SaA
selection?

*Actuators and control nodes have the same meaning—actuators is an o/d word. 1/30



SaA Selection Applications

Smart Power Grids
e Actuator selection: distributed
energy resources

e Sensor selection: smart meter and
PMU data

Water Distribution Networks L Qb b Ob-plipt
e Actuator selection: opening/closing toditii \
valves, releasing contamination bt bl

e Sensor selection: managing smart

mobile water sensors -
Genetic Regulatory Networks

Transportation Networks e Choose genes to measure

e Traffic light control, EV charging
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SaA Selection Problem is Very Diverse

e Different perspectives for the sensor/actuator selection problem

e Planning problems (years—decades as time horizon) focused on SaA
selection/placement

e Operation problems (minutes—days)
e Real-time control (msecs—hours)—most interests, lots of interest
e Renewed interest in the context of networks—not only control-theory

e Research objective: Focusing on the time-varying sensor/actuator
selection in dynamic networks

* Figure out a general framework to deal with this problem

e Most literature focuses on simple linear networks, ignores
nonlinearity, disturbances, time-varying nature of networks
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Uncertain CPS Model

x(t) = Ax(t) + Blu(t) + Bi,w(t) + Bif(x(t)),
y(t) = Cx(t)(t) + Dju(t) + Djv(t)

X, u,y denote the state, control input, and measured output
e w and v are the unknown inputs such as:

— disturbances, parametric uncertainty, data attacks, sensor faults

CPS has a total of N subsystems, with a total of ny states, n,
control inputs, n, outputs

J is the time-period

Dynamics are faster than the change in the CPS topology across j
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CPS Model with Sensor and Actuator (SaA) Selection

Time-Varying SaA Selection Model

CPSDynamics : x(t) = Ax(t) + B.IVu(t) + B w(t) + Bif (x(t))
y(t) = IV C/x(t) + Dju(t) + Dv(t)

e IV and IV are binary variables for the SaA selection

- IV = blkdiag(ﬁflllm ..... TJ/.\/I”W) places vector 7/ in a block
diagonal matrix

e Objective: Find the optimal combination of IV and I/ such that
the system obeys certain physical properties, dynamic metrics

— Common Metrics: minimum energy, robustness, boundedness,

asymptotic stability
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High-Level Research Problem

minimize Z {cn(m)) + () + CtrlObj; + EstObjj}

subject to CPSDynamics
c Ac{0,1}N ~ €S c{o,1}N
ControlConstraints(7;)

EstimationConstraints(~;)

CtrlObj, EstObj: Quantify the needed estimation/control metrics

A, S represent logistic constraints on SaA selection

Control and estimation constraints are often derived from

Lyapunov-like inequalities, yielding SDPs

Literature is rich with formulations for Est/Ctrl problems as SDPs
6/30



Problem Formulation
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Some Background

e Dynamic system consisting of N nodes:

e Physical state: x(t) € R”, control input: u(t) € R™, sensors data:
y(t)eRP, n>mn>p

e Dynamic network is unstable; Re[\;(A)] > 0

e Control objective: stabilize the network using output measurements

e Objective: Design an output feedback controller
u(t) = Fy(t)

such that closed-loop system is stable

e Closed loop dynamics:
x(t) = Ax(t) + Bu(t) = Ax(t) + BFy(t) = (A+ BFC)x(t)
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Background

Dynamic network with output feedback control: x(t) = (A+ BF C)x(t)
e Nonconvex feasibility problem:
find , subject to eig(A+ BFC) <0
e Above problem = to solving nonconvex bilinear matrix inequalities:
BMI: find =0
subjectto A'P+PA+C'F'B"P+PBFC <0

e When is BMI solvable? It's an open problem—collaborations?
e But: for sure need PBH test to hold

For all unstable eigenvalues \; of A (w;, v; are left/right evectors of A)
rank [A Y B] —n, OR w'B#0

A— )\l

c |=m OR Cvi#0

rank
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BMI Posed as an LMI

e Don't even try solve the BMI if PBH test is not satisfied

e Luckily, we can solve linear matrix inequalities (LMI):

LMI: find M.N,P
ATP+PA+C"N'BT +BNC <0

BM = PB,P =0

subject to

then compute F = M~ 'V

e This guarantees that A+ BF C is stable
e Caveat: LMI only sufficient & but still good enough

e Other approach: successive convex approximations for BMls
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SaA Selection in Linear Dynamic Networks

e Now, let's consider the SaA selection with output feedback control
e Binary variables: +; € {0,1}, 7; € {0,1}; network dynamics:

x(t) = Ax(t) + BIlu(t)

y(t) = ICx(t),
e Selecting minimal # of SaA to stabilize dynamic networks:

N

Monster: min Zm + Vi
k=1
st. ATP+PA+C'I'N 1IBT + BIINI'C <0

BIIM = PBIL, P = 0

0
P < ¢ +— LogisticConstraints

e {0, 1}, v e {0, 1}"

e Monster: mixed-integer nonlinear matrix inequalities (MI-NMI) oo
1



Solving Monster, Inc—Method 1
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Dealing with Monster

e Nonconvex terms in Monster:

BIINT'C, BIIM = PBII

Best thing we can do is to transform MI-NMI to MI-SDP

Since IT and T" are diagonal matrices with binary values, we have:

N,'j, if 71','/\71':1
0, if mi Ay =0

(IINT);; = {

Big-M method comes handy here: for large L, above rule implies if
{mi, 7} = {1, 1}, then N; = ©;; ®; = 0 otherwise

e Hence, we can write

1©;] < Ly
1©j] < L1v;
1©; — Nj| < Li(2 — 7 — ),
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Dealing with Monster—2

e We still have to deal with: BIIM = PBII1

e Using similar ideas (but a bit more complicated derivation), we can

prove that:
BIIM = PBII
is equivalent to:
1
{ |M;] 1 0 1 -1 B
19| <L |1 1 0 -1 o

M — Q] < L(1-m), @=(BTB)'BTPB
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Approach 1: Being Clever with Optimization

Theorem—For large L; & L, Monster = Beast!, Beast is MI-SDP

N
Beast: min E Tk + Vi
k=1

st. ATP+PA+CTOBT + BOC <0

[ |©; W 0 1 o][1

6“)5/ \SLI 0 0 1 i
N R A R

A 1 0 1 -1 }

Q) | <Lt 1 0 -1 -
| IM; sz,,\J 2 -1 -1 1 -

i — 7/‘
My — Q< L(A—-7), 2=(B"B)"'B'PB

™

® | <o me{01}" ve{o1}"

il suppose that Monsters are more difficult to deal with than Beasts. [ suppose. 13/30



Solving Beast

e Well, now we have MI-SDP which is much easier to deal with than
MI-NMls

e But MI-SDPs are still messy—I mean, even SDPs are messy
e MI-SDPs can be solved using branch-and-bound algorithms
e We struggled with Beast

* Very few solvers in the market that are easy to interface with
* Yalmip’s MI-SDP solver is the only high-level one?
* Yalmip's BnB can take ages for even smaller networks with N < 20

e Also, any MI-SDP solver will scale so poorly with number of nodes
e Maybe cutting plane methods will perform better

e Bottom line: problem is still very hard

fls it? Other solvers require bringing the SDP to a minimalist form. 14/30



Solving Monster—Method 2
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Method 2 to Solve Monster

LMI:

We developed another method to solve Monster
Idea is based, in a way, on binary search algorithms

First, recall the main complexity:
AP+ PA+ C'I'N'IIBT + BIINI'C < 0, BIIM = PBII

Main idea: if a fixed binary combination of {IL, I'} is feasible for
the LMI above, most likely it's sub-optimal—discard similar
combinations

If a binary combination {II.I'} is infeasible for the LMI, discard
many similar combinations
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What Combinations to Discard?

LMI: find M,N,P >0
subjectto A'P+PA+C'I'N ' TIB' + BIINTC <0
BIIM = PBIL, P > 0

IL.T are not variables now

Alright then, but why and how can you discard combinations?

e Lemma—If a fixed combination {II,T'} yields
infeasible LMI, then deactivating one or more SaA from
{II,T} also yields an infeasible LMI

Similarly, if a combination is feasible, then activating one or more
SaA yields also feasible, but now sub-optimal solution to Monster

Given this, one can discard many combinations
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Binary Search Algorithm to Solve Monster

e S,: database of all candidate binary combinations of {II,T'}
satisfying logistic constraints at iteration p

e S, optimal combination at iteration p

e # of active SaA: H(S) £ 22111 Th + Yk

Algorithm 1 Binary Search to Solve Monster

I: input: S,

2: while S, # 0 do

33 compute: 0 < |S,|, ¢ < [0/2], S, €S,
if LMI is feasible then

5" 45, 8, 8,\{S € 5,|H(S) 2 H(S,)
else

S, S \{Se§,|5VvS=8}
end if

9 p+p+1
10: end while
11: output: S*

® NN s
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e Dynamic network of 2 nodes, 1 input, 1 output for each node
e Logistic constraint: 1 < 221:1 Tk + vk < 4; S can be constructed as:

S= {(1,0,0,0),(0, 1,0,0),(0,0,1,0),(0,0,0,1),
(1,1,0,0),(1,0,1,0),(1,0,0,1), (0,1, 1,0),
(0,1,0,1),(0,0,1,1),(1,1,1,0),(1,1,0,1),(1,0,1,1),(0,1,1, 1)}.

Let (1,0,0,1) be the starting combination; assume LMI is infeasible
for this combination
Discard (1,0,0,0) and (0,0,0,1); updated candidate set:

S = {(O7 1,0,0),(0,0,1,0),(1,1,0,0),(1,0,1,0),(0,1,1,0),(0,1,0,1),

(0,0,1,1),(1,1,1,0),(1,1,0,1),(1,0,1,1),(0,1,1, 1)}.

New candidate: (0,1,0,1); assume LMI is feasible now, updated set:

S; = {(0, 1,0,0), (0,0, 1.,0)}.
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Main Result

e Theorem—Algorithm 1 returns an optimal solution to
Monster

e We need Lemma 1 to prove the theorem

e Would this perform better than MI-SDPs and BnB?

e You still have to solve LMI at each iteration

e Alternative: Instead of solving LMI at each iteration, use PBH test
e Check if every combination satisfies the test; discard combinations

e Challenge: computing evectors/evalues for large-scale matrices
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Solving Monster—Method 3
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We Want Something Faster

e The previous algorithm requires an offline database of all feasible

binary combinations
e For large-scale networks, the database might require TBs of storage

e Alternative: learn in a smart way the binary combinations we should

not test
e Then, apply Algorithm 1 without requiring the database

e Things are tricky here, because this heuristic won't return optimal
solution
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Definitions for the Heuristic

e W: set comprising all binary combinations that do not satisfy the
logistic constraint

e All elements in YW do not need to be known

® w,, W, required min./max. # of activated SaA such that any
candidate S, must satisfy w, < H(S,) < w,

e |n contrast with Algorithm 1, the heuristic constructs and updates a
infeasible binary SaA set

e Z: Forbidden Set
e Since W C Z, initialize Z by W

e At each iteration of the heuristic, randomly generate S ¢ Z while
updating w,, w, and Z—call this procedure GenRandComb

e This procedure is computationally cheap
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Algorithm 2

1. Let p denote the iteration index and ¢ = [(w + w)/2] denote the
desired number of activated SaA for the candidate S such that

H(S)=gq
2. S,(,q): candidate at iteration p with g activated SaA
3. GenRandComb(S,(,q)) ¢ Z

4. Check if this combination yields a feasible LMI: if it does, discard all
suboptimal combinations by updating Z; otherwise also update Z
and choose a different starting point w,, w,

5. Run this algorithm with thresholds and max. iterations
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Numerical Tests
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Numerical Tests: Series Mass-Spring Systems

x(t) = Ax(t) + Bu(t), y(t)=Cx(t), u(t)= Ky(t)

Onxn Iy Onxn

A=
T Onxn

,B = ,C = by

Ingn

e States are position & velocity of each mass

e We choose the following linear constraint on the number of
actuators:
N
Zm > floor(N/4)
i=1
e Objective: minimal total # of activated SaAs given that
A+ BIIFT'C, the closed loop system, is stable
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Numerical Tests

Recall that we want to solve Moster. The methods we test are:

e Beast—a mixed-integer SDP: MI-SDP

e Binary search algorithm (Algorithm 1): BSA-SDP

e Algorithm 1 with PBH test: BSA-PBH

e Heuristic with SDP: HEU-SDP
e Heuristic with PBH test: HEU-PBH

Scenario | Max(Re(A(A + BII*FT*C))) | Sy T+ Yk ‘ At(s) ‘ Iterations ‘ ~* and 7* ‘

MI-SDP 464101 4 667 | — | o o)
BSA-SDP 1.94x10-2 2 weo | a1 |1 }8388388 18 g gg%
BSA-PBH 197x107 5 nss | w0 |1 }8 TR gi
HEU-SDP 1.81x1073 2 7.98 23 ;’r - }838 18888 3 g ggi
HEU-PBH 3.19%10° 7 2.06 s | 7= E(lj 8 o 88 g * 18 gi
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Extensions, Interesting Problems
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Extensions to Time-Varying Selection

e Suppose now that the network topology is changing:
x(t) = Alx(t) + BTV u(t)
y(t) = TVCIx(t),

e Common problem in dynamic networks

e Minimal # of SaAs to stabilize dynamic networks for all
time-periods J:

min ZT’k + i
k.j

st. ATP+PA +CTIVN TVBT + BITVNT/CI <0
BV =PBITH, P -0

]
J
~

o <¢

e {0,1}", o/ € {0,1}"
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Example of SDP Formulations of Control Problems

Linear Quadratic Regulator (LQR) Control

min = IE/;OO x(7)@x(7) + u(T)Ru(T)dT

s.t. x(t) = Ax(t) + Byu(t) + w(t)
w(t) ~ N (0, W)

is equivalent to:

min trace(WS ')

Y
AS+SAT+B,Y+Y'B] S Y
s.t. S —Q! 0 <0
Y’ 0 —R

Solve the SDP, then compute the optimal state-feedback controller that
minimizes J*

u(t)= —R7 B/ 5 !x(t).

26/30



Example of SDP Formulations of Control Problems

Linear Quadratic Regulator (LQR) Control with Actuator Selection

min  J=E / ~ x(7)Qx(7) + u(r)Ru(r)dr

to

s.t. x(t) = Ax(t) + B,ITu(t) + w(t)
w(t) ~ N(0, W), 1T € {0,1}

is equivalent to:

. 1 H
min_ trace(W S )+Zk: k

AS +SAT + B,IIY + Y'IIB] S
s.t. S -Q! 0 <0
Y’ 0 —R1

Solve the MI-BM!I, compute optimal state-feedback controller:

u(t)= —R7 B/ 5 'x(t).
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Other Control Metrics: Robustness to Unknown Inputs

L, Control as an SDP

We want to minimize %; solve this SDP

[Tw(t)[[o0
min (
AS + SAT +2aS -5 0 sc]
st.| -B,Z-2z'B] B, |20 | O -1 D) |=<0
B, —2al c,s D,, -l
2« < w ® Obtain K = Z5%; use
X = Axt Bout Buw feedback control
z=C,x+ D, ,w
T U u(t) = Kx(t)

e This minimizes impact of
w(t) on z(t)

e ( is the control index
> K guaranteeing that

2Bl < VClIw(t)] V't
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L., Control with Actuator Selection

e For this system:

x(t) = Ax(t) + B,I1u(t) + B, w(t)
z(t) = C,x(t) + Dy, w(t)

the co-design problem of L., controller and actuator selection is
nonconvex with mixed-integer bilinear matrix inequalities (MIBMI):

= min (+olm
$,Z,(,1
s.t.
AS +SAT +2a5 -5 0 sc;
-B,J1Z-7z'11B] B, | O | O -1 D],|=0
B; —2al c,s D,, -l

meAc{o,1}V

e «u;: actuators weights; A: actuator logistic constraints

e Relaxing integrality constraints to box yields a lower bound L*
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n Applications

Applications in smart power grids

Water distribution systems

e Contamination control in drink water networks

Transportation networks

Final remarks
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