UTSA

Cherry-Picking Control Nodes and Sensors in Dynamic Networks

Mixed-Integer Programming, Heuristics, Challenges

Ahmad F. Taha, with Sebastian Nugroho, Nikolaos Gatsis, Ram Krishnan
March 2, 2018
Electrical and Computer Engineering, UT San Antonio

Introduction, Motivation

Ubiquity of Sensors \& Actuators in Cyber-Physical Systems

- Sensors and actuators* (SaA) are ubiquitous in CPSs
- By 2050, we'll have tens of billions of SaAs between smart grids, transportation networks, and water distribution networks
- How to activate/deactivate SaAs depending on the cyber-physical state of the infrastructure?
- How to drive a network from one state to another via real-time SaA selection?

[^0]
SaA Selection Applications

Smart Power Grids

- Actuator selection: distributed energy resources
- Sensor selection: smart meter and PMU data

Water Distribution Networks

- Actuator selection: opening/closing valves, releasing contamination
- Sensor selection: managing smart mobile water sensors

Transportation Networks

- Traffic light control, EV charging

Genetic Regulatory Networks

- Choose genes to measure

SaA Selection Problem is Very Diverse

- Different perspectives for the sensor/actuator selection problem
- Planning problems (years-decades as time horizon) focused on SaA selection/placement
- Operation problems (minutes-days)
- Real-time control (msecs-hours)-most interests, lots of interest
- Renewed interest in the context of networks-not only control-theory
- Research objective: Focusing on the time-varying sensor/actuator selection in dynamic networks
* Figure out a general framework to deal with this problem
- Most literature focuses on simple linear networks, ignores nonlinearity, disturbances, time-varying nature of networks

Uncertain CPS Model

Time-Varying Uncertain CPS Model

$$
\begin{aligned}
& \dot{\boldsymbol{x}}(t)=\boldsymbol{A}^{j} \boldsymbol{x}(t)+\boldsymbol{B}_{u}^{j} \boldsymbol{u}(t)+\boldsymbol{B}_{w}^{j} \boldsymbol{w}(t)+\boldsymbol{B}_{f}^{j} \boldsymbol{f}(\boldsymbol{x}(t)), \\
& \boldsymbol{y}(t)=\boldsymbol{C}^{j} \boldsymbol{x}(t)(t)+\boldsymbol{D}_{u}^{j} \boldsymbol{u}(t)+\boldsymbol{D}_{v}^{j} \boldsymbol{v}(t)
\end{aligned}
$$

- $\boldsymbol{x}, \boldsymbol{u}, \boldsymbol{y}$ denote the state, control input, and measured output
- \boldsymbol{w} and \boldsymbol{v} are the unknown inputs such as:
- disturbances, parametric uncertainty, data attacks, sensor faults
- CPS has a total of N subsystems, with a total of n_{x} states, n_{u} control inputs, n_{y} outputs
- j is the time-period
- Dynamics are faster than the change in the CPS topology across j

CPS Model with Sensor and Actuator (SaA) Selection

Time-Varying SaA Selection Model

CPSDynamics : $\dot{\boldsymbol{x}}(t)=\boldsymbol{A}^{j} \boldsymbol{x}(t)+\boldsymbol{B}_{u}^{j} \Pi^{j} \boldsymbol{u}(t)+\boldsymbol{B}_{w}^{j} \boldsymbol{w}(t)+\boldsymbol{B}_{f}^{j} \boldsymbol{f}(\boldsymbol{x}(t))$

$$
\boldsymbol{y}(t)=\Gamma^{j} \boldsymbol{C}^{j} \boldsymbol{x}(t)+\boldsymbol{D}_{u}^{j} \boldsymbol{u}(t)+\boldsymbol{D}_{v}^{j} \boldsymbol{v}(t)
$$

- Γ^{j} and Π^{j} are binary variables for the SaA selection
- $\Pi^{j}=\operatorname{blkdiag}\left(\pi_{1}^{j} I_{n_{U_{1}}}, \ldots, \pi_{N}^{j} I_{n_{U_{N}}}\right)$ places vector π^{j} in a block diagonal matrix
- Objective: Find the optimal combination of Γ^{j} and Π^{j} such that the system obeys certain physical properties, dynamic metrics
- Common Metrics: minimum energy, robustness, boundedness, asymptotic stability

High-Level Research Problem

Problem Formulation

$$
\begin{array}{cc}
\operatorname{minimize} & \sum_{j=1}^{T_{f}}\left\{c_{\pi}\left(\pi_{j}\right)+c_{\gamma}\left(\gamma_{j}\right)+\mathrm{CtrlObj}_{j}+\mathrm{EstObj}_{j}\right\} \\
\text { subject to } & \mathrm{CPSDynamics} \\
\pi_{j} \in \mathcal{A} \subset\{0,1\}^{N}, \gamma_{j} \in \mathcal{S} \subset\{0,1\}^{N} \\
\operatorname{ControlConstraints}\left(\pi_{j}\right) \\
\text { EstimationConstraints }\left(\gamma_{j}\right)
\end{array}
$$

- CtrlObj, EstObj: Quantify the needed estimation/control metrics
- \mathcal{A}, \mathcal{S} represent logistic constraints on SaA selection
- Control and estimation constraints are often derived from Lyapunov-like inequalities, yielding SDPs
- Literature is rich with formulations for Est/Ctrl problems as SDPs

Problem Formulation

Some Background

- Dynamic system consisting of N nodes:

$$
\begin{aligned}
\dot{\boldsymbol{x}}(t) & =\boldsymbol{A} \boldsymbol{x}(t)+\boldsymbol{B u}(t) \\
\boldsymbol{y}(t) & =\boldsymbol{C} \boldsymbol{x}(t)
\end{aligned}
$$

- Physical state: $\boldsymbol{x}(t) \in \mathbb{R}^{n}$, control input: $\boldsymbol{u}(t) \in \mathbb{R}^{m}$, sensors data: $\boldsymbol{y}(t) \in \mathbb{R}^{p} ; n>m, n>p$
- Dynamic network is unstable; $\operatorname{Re}\left[\lambda_{i}(\boldsymbol{A})\right]>0$
- Control objective: stabilize the network using output measurements
- Objective: Design an output feedback controller

$$
\boldsymbol{u}(t)=F \boldsymbol{y}(t)
$$

such that closed-loop system is stable

- Closed loop dynamics:

$$
\dot{\boldsymbol{x}}(t)=\boldsymbol{A} \boldsymbol{x}(t)+\boldsymbol{B u}(t)=\boldsymbol{A} \boldsymbol{x}(t)+\boldsymbol{B} \boldsymbol{F} \boldsymbol{y}(t)=(\boldsymbol{A}+\boldsymbol{B} F \boldsymbol{C}) \boldsymbol{x}(t)
$$

Background

Dynamic network with output feedback control: $\dot{\boldsymbol{x}}(t)=(\boldsymbol{A}+\boldsymbol{B} F \boldsymbol{C}) \boldsymbol{x}(t)$

- Nonconvex feasibility problem:

$$
\text { find } \quad \boldsymbol{F} \text {, subject to } \operatorname{eig}(\boldsymbol{A}+\boldsymbol{B} F \boldsymbol{C})<0
$$

- Above problem \equiv to solving nonconvex bilinear matrix inequalities:
$B M I:$ find $F, P \succ 0$

$$
\text { subject to } \quad \boldsymbol{A}^{\top} \boldsymbol{P}+\boldsymbol{P} \boldsymbol{A}+\boldsymbol{C}^{\top} \boldsymbol{F}^{\top} \boldsymbol{B}^{\top} \boldsymbol{P}+\boldsymbol{P} \boldsymbol{B} \boldsymbol{C} \prec 0
$$

- When is BMI solvable? It's an open problem-collaborations?
- But: for sure need PBH test to hold

Popov-Belevitch-Hautus (PBH) Tests

For all unstable eigenvalues λ_{i} of $\boldsymbol{A}\left(\boldsymbol{w}_{i}, \boldsymbol{v}_{i}\right.$ are left/right evectors of $\left.\boldsymbol{A}\right)$

$$
\begin{array}{rlrl}
\operatorname{rank}\left[\begin{array}{ccc}
\boldsymbol{A}-\lambda_{i} \boldsymbol{I} & \boldsymbol{B}
\end{array}\right] & =n, & \mathbf{O R} \quad \boldsymbol{w}_{i}^{\top} \boldsymbol{B} \neq \mathbf{0} \\
\operatorname{rank}\left[\begin{array}{cll}
\boldsymbol{A}-\lambda_{i} \boldsymbol{I} \\
\boldsymbol{C}
\end{array}\right] & =n, & \mathbf{O R} & \boldsymbol{C}_{\boldsymbol{v}} \neq \mathbf{0}
\end{array}
$$

BMI Posed as an LMI

- Don't even try solve the BMI if PBH test is not satisfied
- Luckily, we can solve linear matrix inequalities (LMI):

LMI: find
subject to
then compute $F=M^{-1} N$

- This guarantees that $\boldsymbol{A}+\boldsymbol{B F C}$ is stable
- Caveat: LMI only sufficient (3) but still good enough
- Other approach: successive convex approximations for BMIs

SaA Selection in Linear Dynamic Networks

- Now, let's consider the SaA selection with output feedback control
- Binary variables: $\gamma_{i} \in\{0,1\}, \pi_{i} \in\{0,1\}$; network dynamics:

$$
\begin{aligned}
\dot{\boldsymbol{x}}(t) & =\boldsymbol{A x}(t)+\boldsymbol{B} \Pi \boldsymbol{u}(t) \\
\boldsymbol{y}(t) & =\Gamma \boldsymbol{C}(t),
\end{aligned}
$$

- Selecting minimal \# of SaA to stabilize dynamic networks:

$$
\begin{aligned}
\hline \text { Monster: } \min & \sum_{k=1}^{N} \pi_{k}+\gamma_{k} \\
\text { s.t. } & \boldsymbol{A}^{\top} P+P \boldsymbol{A}+\boldsymbol{C}^{\top} \Gamma \boldsymbol{N}^{\top} \Pi \boldsymbol{B}^{\top}+\boldsymbol{B} \Pi N \Gamma \boldsymbol{C} \prec 0 \\
& \boldsymbol{B} \Pi M=P \boldsymbol{B} \Pi, P \succ 0 \\
& \boldsymbol{\Phi}\left[\begin{array}{l}
\pi \\
\gamma
\end{array}\right] \leq \boldsymbol{\phi} \longleftarrow \text { LogisticConstraints } \\
& \pi \in\{0,1\}^{N}, \gamma \in\{0,1\}^{N}
\end{aligned}
$$

- Monster: mixed-integer nonlinear matrix inequalities (MI-NMI)

Solving Monster, Inc-Method 1

Dealing with Monster

- Nonconvex terms in Monster:

$B \Pi N \Gamma C, \quad B \Pi M=P B \Pi$

- Best thing we can do is to transform MI-NMI to MI-SDP
- Since $\boldsymbol{\Pi}$ and $\boldsymbol{\Gamma}$ are diagonal matrices with binary values, we have:

$$
(\Pi N \Gamma)_{i j}= \begin{cases}N_{i j}, & \text { if } \pi_{i} \wedge \gamma_{j}=1 \\ 0, & \text { if } \pi_{i} \wedge \gamma_{j}=0\end{cases}
$$

- Big-M method comes handy here: for large L_{1}, above rule implies if $\left\{\pi_{i}, \gamma_{j}\right\}=\{1,1\}$, then $N_{i j}=\Theta_{i j} ; \Theta_{i j}=0$ otherwise
- Hence, we can write

$$
\begin{aligned}
\left|\Theta_{i j}\right| & \leq L_{1} \pi_{i} \\
\left|\Theta_{i j}\right| & \leq L_{1} \gamma_{j} \\
\left|\Theta_{i j}-N_{i j}\right| & \leq L_{1}\left(2-\pi_{i}-\gamma_{j}\right),
\end{aligned}
$$

Dealing with Monster-2

- We still have to deal with: $\boldsymbol{B \Pi M}=P \boldsymbol{B} \Pi$
- Using similar ideas (but a bit more complicated derivation), we can prove that:

$$
B \Pi M=P B \Pi
$$

is equivalent to:

$$
\begin{gathered}
{\left[\begin{array}{c}
\left|M_{i j}\right| \\
\left|\Omega_{i j}\right| \\
\left|M_{i j}-\Omega_{i j}\right|
\end{array}\right] \leq L_{2}\left[\begin{array}{cccc}
1 & 0 & 1 & -1 \\
1 & 1 & 0 & -1 \\
2 & -1 & -1 & 1
\end{array}\right]\left[\begin{array}{c}
1 \\
\pi_{i} \\
\pi_{j} \\
\left|\pi_{i}-\pi_{j}\right|
\end{array}\right]} \\
\left|M_{i j}-\Omega_{i j}\right| \leq L_{2}\left(1-\pi_{i}\right), \Omega=\left(\boldsymbol{B}^{\top} \boldsymbol{B}\right)^{-1} \boldsymbol{B}^{\top} P \boldsymbol{B}
\end{gathered}
$$

Approach 1: Being Clever with Optimization

Theorem—For large $L_{1} \& L_{2}$ Monster \equiv Beast †, Beast is MI-SDP
Beast: $\min \sum_{k=1}^{N} \pi_{k}+\gamma_{k}$

$$
\begin{array}{ll}
\text { s.t. } & \boldsymbol{A}^{\top} P+P \boldsymbol{A}+\boldsymbol{C}^{\top} \Theta \boldsymbol{B}^{\top}+\boldsymbol{B} \Theta \boldsymbol{C} \prec 0 \\
& {\left[\begin{array}{c}
\left|\Theta_{i j}\right| \\
\left|\Theta_{i j}\right| \\
\left|\Theta_{i j}-N_{i j}\right|
\end{array}\right] \leq L_{1}\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
2 & -1 & -1
\end{array}\right]\left[\begin{array}{c}
1 \\
\pi_{i} \\
\gamma_{j}
\end{array}\right]} \\
& {\left[\begin{array}{c}
\left|M_{i j}\right| \\
\left|\Omega_{i j}\right| \\
\left|M_{i j}-\Omega_{i j}\right|
\end{array}\right] \leq L_{2}\left[\begin{array}{cccc}
1 & 0 & 1 & -1 \\
1 & 1 & 0 & -1 \\
2 & -1 & -1 & 1
\end{array}\right]\left[\begin{array}{c}
1 \\
\pi_{i} \\
\pi_{j} \\
\left|\pi_{i}-\pi_{j}\right|
\end{array}\right]} \\
& \left|M_{i j}-\Omega_{i j}\right| \leq L_{2}\left(1-\pi_{i}\right), \Omega=\left(\boldsymbol{B}^{\top} \boldsymbol{B}\right)^{-1} \boldsymbol{B}^{\top} P \boldsymbol{B} \\
& \boldsymbol{\Phi}\left[\begin{array}{c}
\pi \\
\gamma
\end{array}\right] \leq \boldsymbol{\phi}, \pi \in\{0,1\}^{N}, \gamma \in\{0,1\}^{N}
\end{array}
$$

Solving Beast

- Well, now we have MI-SDP which is much easier to deal with than MI-NMIs
- But MI-SDPs are still messy-I mean, even SDPs are messy
- MI-SDPs can be solved using branch-and-bound algorithms
- We struggled with Beast
* Very few solvers in the market that are easy to interface with
* Yalmip's MI-SDP solver is the only high-level one ${ }^{\ddagger}$
* Yalmip's BnB can take ages for even smaller networks with $N<20$
- Also, any MI-SDP solver will scale so poorly with number of nodes
- Maybe cutting plane methods will perform better
- Bottom line: problem is still very hard

[^1]
Solving Monster—Method 2

Method 2 to Solve Monster

- We developed another method to solve Monster
- Idea is based, in a way, on binary search algorithms
- First, recall the main complexity:

LMI: $\quad \boldsymbol{A}^{\top} P+P A+C^{\top} \Gamma N^{\top} \Pi B^{\top}+B \Pi N \Gamma C \prec 0, \quad B \Pi M=P B \Pi$

- Main idea: if a fixed binary combination of $\{\Pi, \Gamma\}$ is feasible for the LMI above, most likely it's sub-optimal-discard similar combinations
- If a binary combination $\{\Pi, \Gamma\}$ is infeasible for the LMI, discard many similar combinations

What Combinations to Discard?

LMI: find
subject to
$M, N, P \succ 0$
$\boldsymbol{A}^{\top} P+P \boldsymbol{A}+\boldsymbol{C}^{\top} \boldsymbol{\Gamma} \boldsymbol{N}^{\top} \boldsymbol{\Pi} \boldsymbol{B}^{\top}+\boldsymbol{B} \boldsymbol{\Pi} N \boldsymbol{\Gamma} \boldsymbol{C} \prec 0$
$\boldsymbol{B} \boldsymbol{M}=P \boldsymbol{B} \boldsymbol{H}, P \succ 0$
Π, Γ are not variables now

- Alright then, but why and how can you discard combinations?
- Lemma-If a fixed combination $\{\boldsymbol{\Pi}, \boldsymbol{\Gamma}\}$ yields infeasible LMI, then deactivating one or more SaA from $\{\boldsymbol{\Pi}, \boldsymbol{\Gamma}\}$ also yields an infeasible LMI
- Similarly, if a combination is feasible, then activating one or more SaA yields also feasible, but now sub-optimal solution to Monster
- Given this, one can discard many combinations

Binary Search Algorithm to Solve Monster

- \mathcal{S}_{p} : database of all candidate binary combinations of $\{\boldsymbol{\Pi}, \boldsymbol{\Gamma}\}$ satisfying logistic constraints at iteration p
- \mathcal{S}_{p} : optimal combination at iteration p
- \# of active $\mathrm{SaA}: \mathcal{H}(\mathcal{S}) \triangleq \sum_{k=1}^{N} \pi_{k}+\gamma_{k}$

```
Algorithm 1 Binary Search to Solve Monster
    1: input: \(\mathcal{S}_{p}\)
    2: while \(\mathcal{S}_{p} \neq \emptyset\) do
    3: compute: \(\sigma \leftarrow\left|\mathcal{S}_{p}\right|, q \leftarrow\lceil\sigma / 2\rceil, \mathcal{S}_{q} \in \mathcal{S}_{p}\)
    4: if LMI is feasible then
    5: \(\quad \mathcal{S}^{*} \leftarrow \mathcal{S}_{q}, \mathcal{S}_{p} \leftarrow \mathcal{S}_{p} \backslash\left\{\mathcal{S} \in \mathcal{S}_{p} \mid \mathcal{H}(\mathcal{S}) \geq \mathcal{H}\left(\mathcal{S}_{q}\right)\right\}\)
    else
        \(\mathcal{S}_{p} \leftarrow \mathcal{S}_{p} \backslash\left\{\mathcal{S} \in \mathcal{S}_{p} \mid \mathcal{S}_{q} \vee \mathcal{S}=\mathcal{S}_{q}\right\}\)
        end if
        \(p \leftarrow p+1\)
10: end while
11: output: \(\mathcal{S}^{*}\)
```


Example

- Dynamic network of 2 nodes, 1 input, 1 output for each node
- Logistic constraint: $1 \leq \sum_{k=1}^{N} \pi_{k}+\gamma_{k}<4 ; \mathcal{S}$ can be constructed as:

$$
\begin{aligned}
\mathcal{S}=\{ & (1,0,0,0),(0,1,0,0),(0,0,1,0),(0,0,0,1) \\
& (1,1,0,0),(1,0,1,0),(1,0,0,1),(0,1,1,0) \\
& (0,1,0,1),(0,0,1,1),(1,1,1,0),(1,1,0,1),(1,0,1,1),(0,1,1,1)\}
\end{aligned}
$$

- Let $(1,0,0,1)$ be the starting combination; assume LMI is infeasible for this combination
- Discard ($1,0,0,0$) and ($0,0,0,1$); updated candidate set:

$$
\begin{aligned}
\mathcal{S}_{2}=\{ & (0,1,0,0),(0,0,1,0),(1,1,0,0),(1,0,1,0),(0,1,1,0),(0,1,0,1), \\
& (0,0,1,1),(1,1,1,0),(1,1,0,1),(1,0,1,1),(0,1,1,1)\} .
\end{aligned}
$$

- New candidate: $(0,1,0,1)$; assume LMI is feasible now, updated set:

$$
\mathcal{S}_{3}=\{(0,1,0,0),(0,0,1,0)\} .
$$

Main Result

- Theorem-Algorithm 1 returns an optimal solution to Monster
- We need Lemma 1 to prove the theorem
- Would this perform better than MI-SDPs and BnB?
- You still have to solve LMI at each iteration
- Alternative: Instead of solving LMI at each iteration, use PBH test
- Check if every combination satisfies the test; discard combinations
- Challenge: computing evectors/evalues for large-scale matrices

Solving Monster-Method 3

We Want Something Faster

- The previous algorithm requires an offline database of all feasible binary combinations
- For large-scale networks, the database might require TBs of storage
- Alternative: learn in a smart way the binary combinations we should not test
- Then, apply Algorithm 1 without requiring the database
- Things are tricky here, because this heuristic won't return optimal solution

Definitions for the Heuristic

- \mathcal{W} : set comprising all binary combinations that do not satisfy the logistic constraint
- All elements in \mathcal{W} do not need to be known
- $\underline{w}_{p}, \bar{w}_{p}$: required min./max. \# of activated SaA such that any candidate \mathcal{S}_{p} must satisfy $w_{p} \leq \mathcal{H}\left(\mathcal{S}_{p}\right) \leq \bar{w}_{p}$
- In contrast with Algorithm 1, the heuristic constructs and updates a infeasible binary SaA set
- Z : Forbidden Set
- Since $\mathcal{W} \subseteq \mathcal{Z}$, initialize \mathcal{Z} by \mathcal{W}
- At each iteration of the heuristic, randomly generate $\mathcal{S} \notin \mathcal{Z}$ while updating $\underline{w}_{p}, \bar{w}_{p}$ and \mathcal{Z}-call this procedure GenRandComb
- This procedure is computationally cheap

Algorithm 2

1. Let p denote the iteration index and $q=\lceil(\underline{w}+\bar{w}) / 2\rceil$ denote the desired number of activated SaA for the candidate \mathcal{S} such that $\mathcal{H}(\mathcal{S})=q$
2. $\mathcal{S}_{p}^{(q)}$: candidate at iteration p with q activated SaA
3. GenRandComb $\left(\mathcal{S}_{p}^{(q)}\right) \notin \mathcal{Z}$
4. Check if this combination yields a feasible LMI: if it does, discard all suboptimal combinations by updating \mathcal{Z}; otherwise also update \mathcal{Z} and choose a different starting point w_{p}, \bar{w}_{p}
5. Run this algorithm with thresholds and max. iterations

Numerical Tests

Numerical Tests: Series Mass-Spring Systems

$$
\begin{gathered}
\dot{\boldsymbol{x}}(t)=\boldsymbol{A} \boldsymbol{x}(t)+\boldsymbol{B} \boldsymbol{u}(t), \quad \boldsymbol{y}(t)=\boldsymbol{C} \boldsymbol{x}(t), \quad \boldsymbol{u}(t)=\boldsymbol{K} \boldsymbol{y}(t) \\
\boldsymbol{A}=\left[\begin{array}{cc}
\boldsymbol{O}_{N \times N} & \boldsymbol{I}_{N} \\
\boldsymbol{T} & \boldsymbol{O}_{N \times N}
\end{array}\right], \boldsymbol{B}=\left[\begin{array}{c}
\boldsymbol{O}_{N \times N} \\
\boldsymbol{I}_{N \times N}
\end{array}\right], \boldsymbol{C}=\boldsymbol{I}_{2 N}
\end{gathered}
$$

- States are position \& velocity of each mass
- We choose the following linear constraint on the number of actuators:

$$
\sum_{i=1}^{N} \pi_{i} \geq \text { floor }(N / 4)
$$

- Objective: minimal total \# of activated SaAs given that $\boldsymbol{A}+\boldsymbol{B} \Pi F \Gamma \boldsymbol{C}$, the closed loop system, is stable

Numerical Tests

Recall that we want to solve Moster. The methods we test are:

- Beast-a mixed-integer SDP: MI-SDP
- Binary search algorithm (Algorithm 1): BSA-SDP
- Algorithm 1 with PBH test: BSA-PBH
- Heuristic with SDP: HEU-SDP
- Heuristic with PBH test: HEU-PBH

Scenario	$\operatorname{Max}\left(\operatorname{Re}\left(\Lambda\left(\boldsymbol{A}+\boldsymbol{B \Pi}^{*} \boldsymbol{F} \boldsymbol{\Gamma}^{*} \boldsymbol{C}\right)\right)\right)$	$\sum_{k=1}^{N} \pi_{k}+\gamma_{k}$	$\Delta t(s)$	Iterations	$\boldsymbol{\gamma}^{*}$ and $\boldsymbol{\pi}^{*}$
MI-SDP	-4.64×10^{-4}	4	166.74	-	$\boldsymbol{\gamma}^{*}=\{0,1,0,0,0,0,0,0,0,0,0,1\}$ $\boldsymbol{\pi}^{*}=\{0,1,1,0,0,0,0,0,0,0,0,0\}$
BSA-SDP	-1.94×10^{-3}	2	33.66	41	$\boldsymbol{\gamma}^{*}=\{0,0,0,0,0,0,0,1,0,0,0,0\}$ $\boldsymbol{\pi}^{*}=\{0,0,0,0,0,0,0,1,0,0,0,0\}$
BSA-PBH	-1.97×10^{-3}	5	21.83	10	$\gamma^{*}=\{0,1,0,0,0,0,0,0,0,0,1,0\}$ $\boldsymbol{\pi}^{*}=\{0,1,0,0,0,1,0,0,0,1,0,0\}$
HEU-SDP	-1.81×10^{-3}	2	7.98	23	$\boldsymbol{\gamma}^{*}=\{0,0,0,1,0,0,0,0,0,0,0,0\}$ $\pi^{*}=\{0,0,0,1,0,0,0,0,0,0,0,0\}$
HEU-PBH	-3.19×10^{-3}	7	2.06	5	$\gamma^{*}=\{1,0,0,1,0,0,0,0,0,1,0,0\}$ $\boldsymbol{\pi}^{*}=\{1,1,0,0,0,0,0,0,1,1,0,0\}$

Extensions, Interesting Problems

Extensions to Time-Varying Selection

- Suppose now that the network topology is changing:

$$
\begin{aligned}
& \dot{\boldsymbol{x}}(t)=\boldsymbol{A}^{j} \boldsymbol{x}(t)+\boldsymbol{B}^{j} \Pi^{j} \boldsymbol{u}(t) \\
& \boldsymbol{y}(t)=\Gamma^{j} \boldsymbol{C}^{j} \boldsymbol{x}(t),
\end{aligned}
$$

- Common problem in dynamic networks
- Minimal \# of SaAs to stabilize dynamic networks for all time-periods j :

$$
\begin{array}{ll}
\min & \sum_{k, j} \pi_{k}^{j}+\gamma_{k}^{j} \\
\text { s.t. } & \boldsymbol{A}^{j \top} P+P \boldsymbol{A}^{j}+\boldsymbol{C}^{j \top} \Gamma^{j} \boldsymbol{N}^{j \top} \Pi^{j} \boldsymbol{B}^{j \top}+\boldsymbol{B}^{j} \Pi^{j} \boldsymbol{N}^{j} \Gamma^{j} \boldsymbol{C}^{j} \prec 0 \\
& \boldsymbol{B}^{j} \Pi^{j} \boldsymbol{M}^{j}=P \boldsymbol{B}^{j} \Pi^{j}, P \succ 0 \\
& \boldsymbol{\Phi}^{j}\left[\begin{array}{l}
\pi^{j} \\
\gamma^{j}
\end{array}\right] \leq \boldsymbol{\phi}^{j} \\
& \pi^{j} \in\{0,1\}^{N}, \gamma^{j} \in\{0,1\}^{N}
\end{array}
$$

Example of SDP Formulations of Control Problems

Linear Quadratic Regulator (LQR) Control

$$
\begin{array}{ll}
\min & J=\mathbb{E} \int_{t_{0}}^{\infty} \boldsymbol{x}(\tau) \boldsymbol{Q} \boldsymbol{x}(\tau)+\boldsymbol{u}(\tau) \boldsymbol{R} \boldsymbol{u}(\tau) d \tau \\
\text { s.t. } & \dot{\boldsymbol{x}}(t)=\boldsymbol{A} \boldsymbol{x}(t)+\boldsymbol{B}_{u} \boldsymbol{u}(t)+\boldsymbol{w}(t) \\
& \boldsymbol{w}(t) \sim \mathcal{N}(\mathbf{0}, \boldsymbol{W})
\end{array}
$$

is equivalent to:
$\min _{\boldsymbol{S}, \boldsymbol{Y}} \quad \operatorname{trace}\left(W S^{-1}\right)$

$$
\text { s.t. } \quad\left[\begin{array}{ccc}
\boldsymbol{A} S+S \boldsymbol{A}^{\top}+\boldsymbol{B}_{u} \boldsymbol{Y}+\boldsymbol{Y}^{\top} \boldsymbol{B}_{u}^{\top} & \boldsymbol{S} & \boldsymbol{Y} \\
S & -\boldsymbol{Q}^{-1} & 0 \\
\boldsymbol{Y}^{\top} & 0 & -\boldsymbol{R}^{-1}
\end{array}\right] \preceq \boldsymbol{O}
$$

Solve the SDP, then compute the optimal state-feedback controller that minimizes J^{*}

$$
\boldsymbol{u}(t)=-\boldsymbol{R}^{-1} \boldsymbol{B}_{u}^{\top} S^{-1} \boldsymbol{x}(t)
$$

Example of SDP Formulations of Control Problems

Linear Quadratic Regulator (LQR) Control with Actuator Selection

$$
\begin{array}{ll}
\min & J=\mathbb{E} \int_{t_{0}}^{\infty} \boldsymbol{x}(\tau) \boldsymbol{Q} \boldsymbol{x}(\tau)+\boldsymbol{u}(\tau) \boldsymbol{R} \boldsymbol{u}(\tau) d \tau \\
\text { s.t. } & \dot{\boldsymbol{x}}(t)=\boldsymbol{A} \boldsymbol{x}(t)+\boldsymbol{B}_{u} \Pi \boldsymbol{u}(t)+\boldsymbol{w}(t) \\
& \boldsymbol{w}(t) \sim \mathcal{N}(\mathbf{0}, \boldsymbol{W}), \Pi \in\{0,1\}
\end{array}
$$

is equivalent to:

$$
\begin{array}{cl}
\min _{S, Y, \Pi} & \operatorname{trace}\left(\boldsymbol{W} \boldsymbol{S}^{-1}\right)+\sum_{k} \Pi_{k} \\
\text { s.t. } & {\left[\boldsymbol{A} S+S \boldsymbol{A}^{\top}+\boldsymbol{B}_{u} \Pi \boldsymbol{Y}+\boldsymbol{Y}^{\top} \Pi \boldsymbol{B}_{u}^{\top}\right.} \\
S & S \\
\boldsymbol{Y}^{\top} & -\boldsymbol{Q}^{-1} \\
\hline
\end{array}
$$

Solve the MI-BMI, compute optimal state-feedback controller:

$$
\boldsymbol{u}(t)=-\boldsymbol{R}^{-1} \Pi \boldsymbol{B}_{u}^{\top} S^{-1} \boldsymbol{x}(t) .
$$

Other Control Metrics: Robustness to Unknown Inputs

\mathcal{L}_{∞} Control as an SDP

We want to minimize $\frac{\|z(t)\|_{\infty}}{\|\boldsymbol{w}(t)\|_{\infty}}$; solve this SDP

$$
\begin{aligned}
& \min \zeta \\
& \text { s.t. }\left[\begin{array}{cc}
\boldsymbol{A} S+S \boldsymbol{A}^{\top}+2 \alpha S & \\
-\boldsymbol{B}_{u} Z-Z^{\top} \boldsymbol{B}_{u}^{\top} & \boldsymbol{B}_{w} \\
\boldsymbol{B}_{w}^{\top} & -2 \alpha \boldsymbol{I}
\end{array}\right] \preceq \boldsymbol{O}\left[\begin{array}{ccc}
-S & \boldsymbol{O} & S \boldsymbol{C}_{z}^{\top} \\
\boldsymbol{O} & -\boldsymbol{I} & \boldsymbol{D}_{w z}^{\top} \\
\boldsymbol{C}_{z} S & \boldsymbol{D}_{w z} & -\zeta \boldsymbol{I}
\end{array}\right] \preceq \boldsymbol{O}
\end{aligned}
$$

- Obtain $K=Z S^{-1}$; use feedback control

$$
\boldsymbol{u}(t)=K x(t)
$$

- This minimizes impact of

$$
\boldsymbol{w}(t) \text { on } \boldsymbol{z}(t)
$$

- ζ is the control index guaranteeing that $\|\boldsymbol{z}(t)\| \leq \sqrt{\zeta}\|\boldsymbol{w}(t)\| \forall t$

\mathcal{L}_{∞} Control with Actuator Selection

- For this system:

$$
\begin{aligned}
\dot{\boldsymbol{x}}(t) & =\boldsymbol{A} \boldsymbol{x}(t)+\boldsymbol{B}_{u} \Pi \boldsymbol{u}(t)+\boldsymbol{B}_{w} \boldsymbol{w}(t) \\
\boldsymbol{z}(t) & =\boldsymbol{C}_{z} \boldsymbol{x}(t)+\boldsymbol{D}_{w z} \boldsymbol{w}(t)
\end{aligned}
$$

the co-design problem of \mathcal{L}_{∞} controller and actuator selection is nonconvex with mixed-integer bilinear matrix inequalities (MIBMI):

$$
\begin{aligned}
& f^{*}= \min _{S, Z, \zeta, \Pi} \zeta+\boldsymbol{\alpha}_{\pi}^{\top} \pi \\
& \text { s.t. } \\
& {\left[\begin{array}{cc}
\boldsymbol{A} S+S \boldsymbol{A}^{\top}+2 \alpha S \\
-\boldsymbol{B}_{u} \Pi Z-Z^{\top} \Pi \boldsymbol{B}_{u}^{\top} & \boldsymbol{B}_{w} \\
\boldsymbol{B}_{w}^{\top} & -2 \alpha \boldsymbol{I}
\end{array}\right] \preceq \boldsymbol{O}\left[\begin{array}{ccc}
-S & \boldsymbol{O} & S \boldsymbol{C}_{z}^{\top} \\
\boldsymbol{O} & -\boldsymbol{I} & \boldsymbol{D}_{w z}^{\top} \\
\boldsymbol{C}_{z} S & \boldsymbol{D}_{w z} & -\zeta \boldsymbol{I}
\end{array}\right] \preceq \boldsymbol{O} } \\
& \Pi \in \mathcal{A} \subset\{0,1\}^{N}
\end{aligned}
$$

- α_{π} : actuators weights; \mathcal{A} : actuator logistic constraints
- Relaxing integrality constraints to box yields a lower bound L^{*}

Discussion on Applications

- Applications in smart power grids
- Water distribution systems
- Contamination control in drink water networks
- Transportation networks
- Final remarks

[^0]: *Actuators and control nodes have the same meaning-actuators is an old word.

[^1]: \ddagger Is it? Other solvers require bringing the SDP to a minimalist form.

