An Evolutionary Algorithm Approach to Generate Distinct Sets of Non-Dominated Solutions for Wicked Problems

Marcio H. Giacomoni
Assistant Professor
Civil and Environmental Engineering

February $16^{\text {th }} 2017$

Zechman, E.M., M. Giacomoni, and M. Shafiee (2013) "An Evolutionary Algorithm Approach to Generate Distinct Sets of Non-Dominated Solutions for Wicked Problems" Engineering Applications of Artificial Intelligence 26(5), 1442-1457.

UTSA Water Resources Systems Analysis Lab:

Engineering Problems

- Many engineering problems have multiple objectives:
- Pareto front should be identified to represents the trade-off among conflicting objectives

Engineering Problems

- Real world problems are ill-posed:
- Multiple perspectives (social, environmental, political)
- Some objectives are difficult to model mathematically

Engineering Problems

- Real world problems are ill-posed:
- Multiple perspectives (social, environmental, political)
- Some objectives are difficult to model mathematically

Engineering Problems

- The fitness landscapes for realistic problems, are often non-linear, complex, and multi-modal.

$$
\begin{aligned}
& \text { Maximize } z=f(\boldsymbol{x}, \boldsymbol{y})=\frac{1}{\left[a\left(y-b x^{2}+c x-d\right)^{2}+e(1-f) \cos (x) \cos (y)+\log (x\right.} \\
& \quad x \times y \in[-5,10] \times[0,15] \quad a=1 ; \mathrm{b}=\frac{5.1}{4 \pi^{2}} ; c=\frac{5}{\pi} ; d=6 ; e=10 ; f=\frac{1}{8 \pi}
\end{aligned}
$$

Modeling to Generate Alternatives

- Decision making can be aided through identification of alternative solutions

Modeling to Generate Alternatives

Original Problem:
Maximize $\quad Z_{\mathrm{k}}=\mathrm{f}_{\mathrm{k}}(\mathrm{X}) \forall \mathrm{k}=1, \ldots, \mathrm{~K}$. (K - number of objectives)
Subject to $\quad \mathrm{g}_{\mathrm{i}}(\mathrm{X}) \leq \mathrm{b}_{\mathrm{i}} \quad \forall \mathrm{i}=1, \ldots, \mathrm{M} .(\mathrm{M}-$ number of constraints $)$.
Optimal Solution:
X^{*}, with objective values of Z_{k} *
New Optimization Problem:
Maximize $\quad \mathrm{D}=\Sigma_{\mathrm{j}}\left|\mathrm{x}_{\mathrm{j}}-\mathrm{x}_{\mathrm{j}}{ }^{*}\right|$.
Subject to $\quad \mathrm{g}_{\mathrm{i}}(\mathrm{X}) \leq \mathrm{b}_{\mathrm{i}} \quad \forall \mathrm{i}=1, \ldots, \mathrm{M}$. $\mathrm{f}_{\mathrm{k}}(\mathrm{X}) \geq \mathrm{T}\left(\mathrm{Z}_{\mathrm{k}}^{*}\right)$.

Research objective

- Develop an algorithm to identify a set of alternative Pareto fronts that are made up of solutions that map to similar regions of the objective space while mapping to maximally different regions of the decision space.

Multi-objective problems

Multi-objective multi-modal problems

Two Sets of non-dominated solutions:
Pareto Front 1 - (a1, b1, and c1)
Pareto Front 2 - (a2, b2, and c2)

Multi-objective Evolutionary Algorithms to Generate Alternative Non-dominated Sets

- Use a set of populations to converge to alternative sets of non-dominated solutions
- Each subpopulation will evolve one Pareto front that is different in decision space from other subpopulations
- First subpopulation executes a conventional MOEA to find a typical Pareto front
- Secondary subpopulations find alternative Pareto fronts

Multi-objective Niching Co-evolutionary Algorithm (MNCA)

- Multiple sub-populations co-evolve to distinct sets of nondominated solutions

Zechman, E.M., M. Giacomoni, and E. Shafiee (2013) "An Evolutionary Algorithm Approach to Generate Distinct Sets of Non-Dominated Solutions for Wicked Problems" Engineering Applications of Artificial Intelligence 26(5), pp. 1442-1457

Multi-objective Niching CoEvolutionary Algorithm (MNCA)

1. Group all solutions into clusters based on proximity in objective space

- K-means clustering

2. Distance calculation

- The distance of one solution is calculated in decision space to solutions that fall in the same cluster but in different subpopulations

3. Target Front

- A target front is created, based on the first front of non-dominated solutions from first subpopulation

4. Feasibility Assignment

- Label solutions in secondary subpopulations as feasible if they dominate any point in the target front

5. Selection:

- First Subpopulation: NSGA-II operator
- Secondary Subpopulations: Crowding Distance and Binary Tournament
- Infeasible: rank and NSGA-II Crowding distance
- Feasible: Crowding distance using four solutions

MNCA Algorithmic steps

1. Group all solutions into clusters based on proximity in objective space

- K-means clustering

Objective space

MNCA Algorithmic steps

1. Group all solutions into clusters based on proximity in objective space

- K-means clustering

Objective space

MCA Algorithmic steps

1. Group all solutions into clusters based on proximity in objective space

- K-means clustering

Colors represent different clusters that are formed based on similarities in objective space

MCA Algorithmic steps

1. Group all solutions into clusters based on proximity in objective space

- K-means clustering

2. Distance calculation

- The distance of one solution is calculated in decision space to solutions that fall in the same cluster but in different subpopulations

Distance calculation

Decision Space

Distance is calculated for each solution to centroid of same cluster in other subpopulations
Solution $\operatorname{Red}_{2, i}$ Distance $=$ minimum $\left(\right.$ Distance to $C_{1, \text { red }} ;$ Distance to $C_{3, \text { red }}$)

MNCA Algorithmic steps

1. Group all solutions into clusters based on proximity in objective space

- K-means clustering

2. Distance calculation

- The distance of one solution is calculated in decision space to solutions that fall in the same cluster but in different subpopulations

3. Target Front

- A target front is created, based on the first front of non-dominated solutions from first subpopulation

Target front

$$
Z_{i}^{\prime}=T\left(Z i-W P_{i}\right)+W P_{i}
$$

Z_{i}^{\prime} is the a point on the target front Z_{i} is the value of the $i^{\text {th }}$ objective T is the target reduction (i.e., 80\%) $W P_{i}$ is the worst point for the $i^{\text {th }}$ objective

Objective space

MNCA Algorithmic steps

1. Group all solutions into clusters based on proximity in objective space

- K-means clustering

2. Distance calculation

- The distance of one solution is calculated in decision space to solutions that fall in the same cluster but in different subpopulations

3. Target Front

- A target front is created, based on the first front of non-dominated solutions from first subpopulation

4. Feasibility Assignment

- Label solutions in secondary subpopulations as feasible if they dominate any point in the target front

Target front

$$
Z_{i}^{\prime}=T\left(Z i-W P_{i}\right)+W P_{i}
$$

Z_{i}^{\prime} is the a point on the target front
Z_{i} is the value of the $i^{\text {th }}$ objective
T is the target reduction (i.e., 80\%)
$W P_{i}$ is the worst point for the $i^{i t h}$ objective

Objective space

Objective space

MNCA Algorithmic steps

1. Group all solutions into clusters based on proximity in objective space

- K-means clustering

2. Distance calculation

- The distance of one solution is calculated in decision space to solutions that fall in the same cluster but in different subpopulations

3. Target Front

- A target front is created, based on the first front of non-dominated solutions from first subpopulation

4. Feasibility Assignment

- Label solutions in secondary subpopulations as feasible if they dominate any point in the target front

5. Selection:

- First Subpopulation: NSGA-II operator
- Secondary Subpopulations: Crowding Distance and Binary Tournament
- Infeasible: rank and NSGA-II Crowding distance
- Feasible: Crowding distance using four solutions

Crowding Distance

Infeasible Solutions
Feasible Solutions

Binary Tournament

Infeasible Feasible

Feasible WINS!!!

Objective space

Binary Tournament

Objective space

Feasible Feasible
Same Cluster X

Higher Distance WINS!!!

Solutions within the same region of objective space:
Maximize Distance increasing diversity.

Binary Tournament

Objective space

Feasible Feasible Different Clusters x

Higher Modified Crowding Distance WINS!!!

Solutions are from different parts of the objective space:
pressure to improve the coverage across the Pareto front.

Binary Tournament

Niching-CMA

- Covariance Matrix Adaptation Evolution Strategy Niching Technique.
- Group solutions in niches based on their proximity in both decision and objective space.
- Outperformed other multi-objective and diversity-enhancing methodologies.

Algorithmic Settings

Parameter	Setting
Population Size	50
Subpopulations	2
Generations	1000
Mutation	1%
Clusters	5
Target	$90 \%(95 \%)^{1}$
195% was used for the function Two-on-One	

Hypervolume

- Represents the size of the space covered by the nondominated set
- Used as an indicator to measure the quality of a nondominated set

Decision Space Diversity

- Assess diversity in decision space based on the distance between all pair of individuals in a population
- Average of the distances between pairs of solutions and is normalized by the diameter of the decision space

$$
\begin{equation*}
\text { diversity }=\frac{1}{R \times \operatorname{pop}(\text { pop }-1)} \sum_{i=1}^{\text {pop }} \sum_{j=i+1}^{\text {pop }} d\left(X_{i,}, X_{j}\right) \tag{7}
\end{equation*}
$$

where $d\left(X_{i}, X_{j}\right)$ is the Euclidean distance in decision space between the i th and j th solutions in a subpopulation. The equation for R is given as

$$
\begin{equation*}
R=\sqrt{\sum_{i=1}^{N}\left(x_{i, \max }-x_{\mathrm{i}, \min }\right)^{2}} \tag{8}
\end{equation*}
$$

Paired Solution Diversity

- New metric to assess set of solutions that are distant in decision space though similar in objective space.
- Pair solution of one subpopulation with solution of another subpopulation that is nearest in objective space, and for each pair, calculating the Euclidean distance in the decision space.

Paired Solution Diversity

Test Function Two-on-One

- Two-on-One is a bi-modal problem composed of a fourth degre polynomial with two optima and a second-degree sphere function.

M. Preuss, B. Naujoks, and G. Rudolph, "Pareto Set and EMOA Behavior for Simple Multimodal Multiobjective Functions," in Parallel Problem Solving from Nature - PPSN IX, 2006, pp. 513-522.

Decision Space

Subpopulation 2

Function Two-on-One

Function Two-on-One

Test Function Deb99

- Deb99 is a deceptive multi-objective problem that has a global optima difficult to identify and a local optima located in a long flat valley that is easy to find.

M. Preuss, B. Naujoks, and G. Rudolph, "Pareto Set and EMOA Behavior for Simple Multimodal Multiobjective Functions," in Parallel Problem Solving from Nature - PPSN IX, 2006, pp. 513-522.

Deb99 Test Function

Deb99	Minimize $f_{1}=x_{1} ;$ Minimize $f_{2}=\frac{g\left(x_{2}\right)}{x_{1}}$	$0 \leq x_{i} \leq 1$
	$g\left(x_{2}\right)=2-\exp \left\{-\left(\frac{x_{2}-0.2}{0.004}\right)^{2}\right\}-0 . \operatorname{sexp}\left\{-\left(\frac{x_{2}-0.6}{0.4}\right)^{2}\right\}$	$i=1,2$

- First subpopulation

Second subpopulation

Function Deb99

Lamé Supersphere

- Lamé Supersphere is a multi-modal problem global with spherical geometry in objective space and equidistant parallel lines in decision space.

M. Preuss, B. Naujoks, and G. Rudolph, "Pareto Set and EMOA Behavior for Simple Multimodal Multiobjective Functions," in Parallel Problem Solving from Nature - PPSN IX, 2006, pp. 513-522.

Function Lame Supersphere

Hypervolume

Test Function	Niching CMA	MNCA	
		Subpopulation 1	Subpopulation 2
Two-on-One	169.6 ± 1.9	$\mathbf{1 7 3 . 6} \pm \mathbf{0 . 1}$	165.6 ± 3.2
Deb99	7.95 ± 0.69	$\mathbf{9 . 1 2} \pm \mathbf{0 . 0 1}$	7.45 ± 0.35
Lamé Superspheres	3.12 ± 0.13	$\mathbf{3 . 1 9} \pm \mathbf{0 . 0 2}$	2.95 ± 0.14

Decision Space Diversity

Test Function	Niching CMA	MNCA
Two-on-One	0.231 ± 0.031	0.298 ± 0.032
Deb99	0.285 ± 0.032	$\mathbf{0 . 3 5 9} \pm \mathbf{0 . 0 1 5}$
Lamé Superspheres	$\mathbf{0 . 3 2 9} \pm \mathbf{0 . 0 3 9}$	0.112 ± 0.007

Paired Solution Diversity

Test Function	MCA	MNCA
Two-on-One	2.158 ± 0.239	$\mathbf{2 . 6 4} \pm \mathbf{0 . 4 9}$
Deb99	0.23 ± 0.06	$\mathbf{0 . 4 7} \pm \mathbf{0 . 0 8}$
Lamé Superspheres	0.79 ± 0.05	$\mathbf{1 . 5 9} \pm \mathbf{0 . 0 4}$

Realistic Planning Problem: Airline Routing

- Determine a set of 28 routes to connect 8 cities to maintain objectives:
- minimize f_{1} : Cost
- minimize f_{2} : Number of stops
- Given:
- Number of requests at each city
- Cost of initial set-up
- Cost of each flight
- Unit cost for each passenger
- Potential type of connections:
- Directly
- Indirectly- through multiple-leg connections

Settings for MNCA

Parameter	Setting
Population Size	100
Subpopulations	3
Generations	100
Mutation	1%
Clusters	5
Relaxation coefficient	90%

Distinct sets of non-dominated solutions

Twenty five-stop alternative solutions

Distinct sets of non-dominated solutions

Eighteen-stop alternative solutions

Distinct sets of non-dominated solutions

Seventeen-stop alternative solutions

Where should Osaka Prefecture University be located?

OFU - Problem Formulation

2 decision variables and 4 objective values
$\mathrm{f}_{1}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)=\mathrm{min}$ distance to the nearest elementary school $\mathrm{f}_{2}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)=\mathrm{min}$ distance to the nearest convenience store $\mathrm{f}_{3}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)=\mathrm{min}$ distance to the nearest junior-high school $\mathrm{f}_{4}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)=\mathrm{min}$ distance to the nearest railway
station

OFU - Algorithm settings

Parameter	Setting
Population Size	100
Subpopulations	2
Generations	100
Mutation	1%
Clusters	5
Target	95%

Results - Objective Space

Subpopulation 1

Subpopulation 2

$f_{2}=$ min distance to the nearest convenience store

Results - Decision Space

Subpopulation 1

Subpopulation 2

Conclusions

- Results demonstrate the ability of a new algorithm, MNCA, to identify sets of nondominated solutions for test problems.
- Outperforms state-of-the-art (Niching-CMA) in diversity algorithms for multi-objective problems.
- A new metric to assess diversity among subpopulations was developed.
- MNCA maximizes diversity in decision space while identifying complete alternative Pareto fronts.

Thank you for your Attention!

Number of Clusters

Hypervolume

Paired Solution Diversity

Number of Subpopulations

Paired Solution Diversity

MCA

Targets

