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Engineering Problems

• Many engineering problems have multiple objectives: 

– Pareto front should be identified to represents the trade-off 
among conflicting objectives
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Engineering Problems
• Real world problems are ill-posed:

– Multiple perspectives (social, environmental, political)

– Some objectives are difficult to model mathematically

It’s White 
and 

Gold!!!

No it’s 
NOT!!! It’s 
Blue and 
Black!!!



Engineering Problems
• Real world problems are ill-posed:

– Multiple perspectives (social, environmental, political)

– Some objectives are difficult to model mathematically



Engineering Problems
• The fitness landscapes for realistic problems, are often 

non-linear, complex, and multi-modal. 

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑧 = 𝑓 𝒙, 𝒚 =
1

[𝑎 𝑦 − 𝑏𝑥2 + 𝑐𝑥 − 𝑑 2 + 𝑒 1 − 𝑓 cos 𝑥 cos 𝑦 + log 𝑥2 + 𝑥2 + 1 + 𝑒]

𝑎 = 1 ; b =
5.1

4π2
; 𝑐 =

5

𝜋
; 𝑑 = 6 ; 𝑒 = 10 ; 𝑓 =

1

8𝜋
𝑥 × 𝑦 ∈ −5,10 × [0,15]
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Modeling to Generate Alternatives
• Decision making can be aided through 

identification of alternative solutions

Alternative 1
Alternative 2

Alternative 3

GOOD SOLUTION



Modeling to Generate Alternatives

Original Problem:
Maximize Zk = fk (X)  k = 1, …, K . (K – number of objectives)

Subject to gi(X) < bi  i = 1, …, M . (M – number of constraints).

Optimal Solution:
X*, with objective values of Zk*

New Optimization Problem:
Maximize D = j | xj – xj

* | .
Subject to gi(X) < bi  i = 1, …, M .

fk(X) > T(Zk
*) .

Brill, E. D. Jr. (1979). The use of optimization models in public-sector planning. 

Management Science, 25(5), 413-422. 



Research objective

• Develop an algorithm to identify a set of 
alternative Pareto fronts that are made up of 
solutions that map to similar regions of the 
objective space while mapping to maximally
different regions of the decision space.



Multi-objective problems
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Multi-objective multi-modal problems
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Multi-objective Evolutionary Algorithms to 
Generate Alternative Non-dominated Sets

• Use a set of populations to 
converge to alternative sets 
of non-dominated solutions
– Each subpopulation will evolve 

one Pareto front that is 
different in decision space 
from other subpopulations

– First subpopulation executes a 
conventional MOEA to find a 
typical Pareto front

– Secondary subpopulations find 
alternative Pareto fronts
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Multi-objective Niching Co-evolutionary 
Algorithm (MNCA)

Primary 
subpopulation

f2

f1

Secondary 
subpopulation

f2
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Secondary 
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f2

f1

Zechman, E.M., M. Giacomoni, and E. Shafiee (2013) “An Evolutionary Algorithm Approach to Generate Distinct Sets of Non-Dominated 
Solutions for Wicked Problems” Engineering Applications of Artificial Intelligence 26(5), pp. 1442-1457

• Multiple sub-populations co-evolve to distinct sets of non-
dominated solutions



Multi-objective Niching Co-
Evolutionary Algorithm (MNCA)

1. Group all solutions into clusters based on proximity in objective 
space
– K-means clustering

2. Distance calculation
– The distance of one solution is calculated in decision space to solutions 

that fall in the same cluster but in different subpopulations

3. Target Front
– A target front is created, based on the first front of non-dominated 

solutions from first subpopulation 

4. Feasibility Assignment
– Label solutions in secondary subpopulations as feasible if they dominate 

any point in the target front

5. Selection:
– First Subpopulation: NSGA-II operator
– Secondary Subpopulations: Crowding Distance and Binary Tournament

• Infeasible: rank and NSGA-II Crowding distance
• Feasible:  Crowding distance using four solutions



MNCA Algorithmic steps
1. Group all solutions into clusters based on proximity in 

objective space
– K-means clustering
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MCA Algorithmic steps
1. Group all solutions into clusters based on proximity in 

objective space
– K-means clustering

…

Subpopulation 1

SP1

Subpopulation 2

SP2

Subpopulation SPn…

Decision Space

Colors represent different clusters that are formed based on similarities in 
objective space



MCA Algorithmic steps
1. Group all solutions into clusters based on proximity in 

objective space
– K-means clustering

2. Distance calculation
– The distance of one solution is calculated in decision space to 

solutions that fall in the same cluster but in different subpopulations



Distance calculation

…
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Distance is calculated for each solution to centroid of same cluster in other subpopulations

Solution Red2,i Distance = minimum(Distance to C1, red; Distance to C3, red)

C1, red
C3, red



MNCA Algorithmic steps
1. Group all solutions into clusters based on proximity in 

objective space
– K-means clustering

2. Distance calculation
– The distance of one solution is calculated in decision space to 

solutions that fall in the same cluster but in different subpopulations

3. Target Front
– A target front is created, based on the first front of non-dominated 

solutions from first subpopulation



Target front

F1

F2 Target 
Front

Zi’ = T(Zi – WPi) + WPi

Zi’ is the a point on the target front
Zi is the value of the ith objective
T is the target reduction (i.e., 80%)
WPi is the worst point for the ith objective

Objective space
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MNCA Algorithmic steps
1. Group all solutions into clusters based on proximity in objective 

space
– K-means clustering

2. Distance calculation
– The distance of one solution is calculated in decision space to solutions 

that fall in the same cluster but in different subpopulations

3. Target Front
– A target front is created, based on the first front of non-dominated 

solutions from first subpopulation 

4. Feasibility Assignment
– Label solutions in secondary subpopulations as feasible if they 

dominate any point in the target front
5. Selection:

– First Subpopulation: NSGA-II operator
– Secondary Subpopulations: Crowding Distance and Binary Tournament

• Infeasible: rank and NSGA-II Crowding distance
• Feasible:  Crowding distance using four solutions



Crowding Distance
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Binary Tournament
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Feasible WINS!!!



Binary Tournament
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Higher Distance 
WINS!!!

Solutions within the same region 
of objective space: 

Maximize Distance increasing 
diversity.



Binary Tournament
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Different Clusters 

Solutions are from different parts 
of the objective space:

pressure to improve the coverage 
across the Pareto front. 



Binary Tournament
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Niching-CMA

• Covariance Matrix Adaptation Evolution Strategy 
Niching Technique.

• Group solutions in niches based on their 
proximity in both decision and objective space. 

• Outperformed other multi-objective and 
diversity-enhancing methodologies.

O. Shir and T. Beck, “Niching with derandomized evolution strategies in artificial and real-world landscapes,” 
Natural Computing, vol. 8, pp. 171–196, 2009, 10.1007/s11047-007-9065-5.



Algorithmic Settings

Parameter Setting

Population Size 50

Subpopulations 2

Generations 1000

Mutation 1%

Clusters 5

Target 90% (95%)1

1 95% was used for the function Two-on-One
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Decision Space Diversity
• Assess diversity in decision space based on the 

distance between all pair of individuals in a 
population

• Average of the distances between pairs of 
solutions and is normalized by the diameter of 
the decision space

O. Shir and T. Beck, “Niching with derandomized evolution strategies in artificial and real-world landscapes,” 
Natural Computing, vol. 8, pp. 171–196, 2009, 10.1007/s11047-007-9065-5.



Paired Solution Diversity

• New metric to assess set of solutions that are 
distant in decision space though similar in 
objective space.

• Pair solution of one subpopulation with 
solution of another subpopulation that is 
nearest in objective space, and for each pair, 
calculating the Euclidean distance in the 
decision space.



Paired Solution Diversity
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Test Function Two-on-One

• Two-on-One is a bi-modal problem composed 
of a fourth degre polynomial with two optima 
and a second-degree sphere function.

M. Preuss, B. Naujoks, and G. Rudolph, “Pareto Set and EMOA Behavior for Simple Multimodal Multiobjective
Functions,” in Parallel Problem Solving from Nature - PPSN IX, 2006, pp. 513–522.
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Function Two-on-One
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Test Function Deb99

• Deb99 is a deceptive multi-objective problem 
that has a global optima difficult to identify 
and a local optima located in a long flat valley 
that is easy to find.

M. Preuss, B. Naujoks, and G. Rudolph, “Pareto Set and EMOA Behavior for Simple Multimodal Multiobjective
Functions,” in Parallel Problem Solving from Nature - PPSN IX, 2006, pp. 513–522.
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Deb99 Test Function

First subpopulation
Second subpopulation
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Lamé Supersphere

• Lamé Supersphere is a multi-modal problem 
global with spherical geometry in objective 
space and equidistant parallel lines in decision 
space.

M. Preuss, B. Naujoks, and G. Rudolph, “Pareto Set and EMOA Behavior for Simple Multimodal Multiobjective
Functions,” in Parallel Problem Solving from Nature - PPSN IX, 2006, pp. 513–522.
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Function Lame Supersphere

 Niching-CMA MCA MNCA 
 Subpopulation 1 Subpopulation 2 Subpopulation 1 Subpopulation 2 

D
e
c
is

io
n
 S

p
a
c
e
 

     

O
b
je

c
ti
v
e
 S

p
a
c
e
 

     

0 0.5 1 1.5
0

1

2

3

4

5

0 0.5 1 1.5
0

1

2

3

4

5

0 0.5 1 1.5
0

1

2

3

4

5

0 0.5 1 1.5
0

1

2

3

4

5

0 0.5 1 1.5
0

1

2

3

4

5

0 0.5 1
0

0.2

0.4

0.6

0.8

1

1.2

0 0.5 1
0

0.2

0.4

0.6

0.8

1

1.2

0 0.5 1
0

0.2

0.4

0.6

0.8

1

1.2

0 0.5 1
0

0.2

0.4

0.6

0.8

1

1.2

0 0.5 1
0

0.2

0.4

0.6

0.8

1

1.2

 Niching-CMA MCA MNCA 
 Subpopulation 1 Subpopulation 2 Subpopulation 1 Subpopulation 2 

D
e
c
is

io
n
 S

p
a
c
e
 

     

O
b
je

c
ti
v
e
 S

p
a
c
e
 

     

0 0.5 1 1.5
0

1

2

3

4

5

0 0.5 1 1.5
0

1

2

3

4

5

0 0.5 1 1.5
0

1

2

3

4

5

0 0.5 1 1.5
0

1

2

3

4

5

0 0.5 1 1.5
0

1

2

3

4

5

0 0.5 1
0

0.2

0.4

0.6

0.8

1

1.2

0 0.5 1
0

0.2

0.4

0.6

0.8

1

1.2

0 0.5 1
0

0.2

0.4

0.6

0.8

1

1.2

0 0.5 1
0

0.2

0.4

0.6

0.8

1

1.2

0 0.5 1
0

0.2

0.4

0.6

0.8

1

1.2



Hypervolume

Test Function Niching CMA
MNCA

Subpopulation 1 Subpopulation 2

Two-on-One 169.6 ± 1.9 173.6 ± 0.1 165.6 ± 3.2
Deb99 7.95 ± 0.69 9.12 ± 0.01 7.45 ± 0.35

Lamé Superspheres 3.12 ± 0.13 3.19 ± 0.02 2.95 ± 0.14

Decision Space Diversity

Paired Solution Diversity

Test Function Niching CMA MNCA
Two-on-One 0.231 ± 0.031 0.298 ± 0.032

Deb99 0.285 ± 0.032 0.359 ± 0.015
Lamé Superspheres 0.329 ± 0.039 0.112 ± 0.007

Test Function MCA MNCA
Two-on-One 2.158 ± 0.239 2.64 ± 0.49

Deb99 0.23 ± 0.06 0.47 ± 0.08
Lamé Superspheres 0.79 ± 0.05 1.59 ± 0.04



o Determine a set of 28 routes to connect 8 cities to 
maintain objectives: 
o minimize f1 : Cost
o minimize f2 : Number of stops

o Given:
o Number of requests at each city
o Cost of initial set-up
o Cost of each flight
o Unit cost for each passenger
o Potential type of connections:

o Directly
o Indirectly- through multiple-leg 

connections

Realistic Planning Problem: 
Airline Routing



Settings for MNCA

Parameter Setting

Population Size 100

Subpopulations 3

Generations 100

Mutation 1%

Clusters 5

Relaxation coefficient 90%



Distinct sets of non-dominated solutions
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Where should Osaka Prefecture 
University be located?



OFU – Problem Formulation 
2 decision variables and 4 objective values 

f1(x1,x2) = min distance to the 
nearest elementary school 
f2(x1,x2) = min distance to the 
nearest convenience store 
f3(x1,x2) = min distance to the 
nearest junior-high school
f4(x1,x2) = min distance to the 
nearest railway 
station



OFU – Algorithm settings

Parameter Setting

Population Size 100

Subpopulations 2

Generations 100

Mutation 1%

Clusters 5

Target 95%



Results - Objective Space
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Results - Decision Space
Subpopulation 1 Subpopulation 2



Conclusions
• Results demonstrate the ability of a new 

algorithm, MNCA, to identify sets of non-
dominated solutions for test problems.

• Outperforms state-of-the-art (Niching-CMA) in 
diversity algorithms for multi-objective problems.

• A new metric to assess diversity among 
subpopulations was developed. 

• MNCA maximizes diversity in decision space 
while identifying complete alternative Pareto 
fronts.



Thank you for your Attention!
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