- Hamiltonian:

$$
\mathcal{H}\left(x, u, \lambda^{*}(x, t), t\right)=g(x, u, t)+\lambda^{*}(x, t) f(x, u, t)
$$

- Value function properties:

1. $V_{x}(x, t)=\frac{\partial V}{\partial x}=\lambda^{*}(x, t)$
2. $-V_{t}(x, t)=-\frac{\partial V}{\partial t}=\min _{u \in \mathcal{U}} \mathcal{H}\left(x, u, \lambda^{*}(x, t), t\right)=\left(\frac{\partial \mathcal{H}}{\partial x}\right)^{\top}$

- The HJB Equation:

$$
-V_{t}^{*}(x, t)=-\frac{\partial V}{\partial t}=\min _{u \in \mathcal{U}} \mathcal{H}\left(x, u, \lambda^{*}(x, t), t\right)=\left(\frac{\partial \mathcal{H}}{\partial x}\right)^{\top}
$$

For this optimal control problem,

$$
\begin{aligned}
& \text { minimize } J= \frac{1}{2} x_{t_{f}}^{\top} H x_{t_{f}}+\frac{1}{2} \int_{t_{0}}^{t_{f}}\left[x(t)^{\top} Q(t) x(t)+u(t)^{\top} R(t) u(t)\right] d t \\
& \text { subject to } \quad \dot{x}(t)=A(t) x(t)+B(t) u(t),
\end{aligned}
$$

answer the following questions:

1. Construct the Hamiltonian.
2. Find the optimal $u^{*}(t)$ in terms of $\lambda^{*}(x, t)$.
3. Write the Hamiltonian in terms of $u^{*}(t)$.
4. Apply the value function properties (above) for this candidate value function:

$$
V^{*}(x, t)=\frac{1}{2} x^{\top}(t) P(t) x(t), P(t)=P^{\top}(t)
$$

5. Based on the given, derive the Differential Riccati Equation that relates $\dot{P}(t)$ with $P(t)$, and explain how can $u^{*}(t)$ be obtained.
