The University of Texas at San Antonio	QUIZ \# 7
EE 3413	Ahmad F. Taha
ANALYSIS AND Design of Control Systems	March 22, 2016

Name:

The objective of this exercise is to plot the root locus corresponding to a unity feedback system with a characteristic polynomial given as follows:

$$
1+K G(s) H(s)=1+K \frac{(s+2)}{s^{2}+2 s+2}
$$

Answer the following questions. Show your work.

1. Determine the poles and zeros of the open loop transfer function $(G(s) H(s))$. How many branches does the RL have?
2. Determine the asymptote angles ϕ_{q} as well as their point of intersection σ_{A}. Recall that:

$$
\begin{gathered}
\phi_{q}=\frac{(1+2 q) 180}{n_{p}-n_{z}} \mathrm{deg}, \forall q=0,1,2, \ldots, n_{p}-n_{z}-1 \\
\sigma_{A}=\frac{\sum_{i=1}^{n_{p}} \operatorname{Re}\left(p_{i}\right)-\sum_{j=1}^{n_{z}} \operatorname{Re}\left(z_{j}\right)}{n_{p}-n_{z}}
\end{gathered}
$$

3. Determine any breakaway/break-in points. If none exist, state none!
4. Determine the angle of departure/arrival, if any. Recall that:

$$
\begin{aligned}
& \text { AoD from a complex pole : } \phi_{p}=180-\sum_{i} \angle p_{i}+\sum_{j} \angle z_{j}, \\
& \text { AoA at a complex zero : } \phi_{z}=180+\sum_{i} \angle p_{i}-\sum_{j} \angle z_{j}
\end{aligned}
$$

5. Sketch the root locus-no need to find the crossings with the $j \omega$ axis.
