Find a solution (or solutions) that satisfies the KKT conditions for the following optimization problem:

$$
\begin{array}{ll}
\underset{x}{\operatorname{minimize}} & f(x)=2 x_{1}+x_{2} \\
\text { subject to } & h(x)=x_{1}+x_{2}-1=0 \\
& g(x)=x_{1}+2 x_{2}-2 \leq 0 \tag{3}
\end{array}
$$

The KKT conditions are given by:

1. $\nabla_{x} \mathcal{L}\left(x^{*}, \lambda^{*}, \mu^{*}\right)=\nabla_{x} f(x)+\lambda^{*} \nabla_{x} h\left(x^{*}\right)+\mu^{*} \nabla_{x} g\left(x^{*}\right)=0$
2. $\mu^{*} \geq 0$
3. $\mu^{*} g\left(x^{*}\right)=0$
4. $g\left(x^{*}\right) \leq 0$
5. $h\left(x^{*}\right)=0$

Solution: Conditions are as follows (we drop the * for brevity):

1. $2+\lambda+\mu=0$
2. $1+\lambda+2 \mu=0$
3. $x_{1}+x_{2}-1=0$
4. $\mu\left(x_{1}+2 x_{2}-2\right)=0$
5. $x_{1}+2 x_{2}-2 \leq 0$

Solving 1. and 2., we obtain: $\lambda^{*}=-3, \mu^{*}=1$. From 3. and 4., we get: $x_{1}^{*}=0, x_{2}^{*}=1$. This solution clearly satisfies condition 5 .

Hence, $\mathbf{x}^{*}=\left[\begin{array}{l}0 \\ 1\end{array}\right]$ satisfies the KKT conditions and is a candidate for being a minimizer for the given optimization problem.

