The University of Texas at San Antonio
EE 5243
Introduction to Cyber-Physical Systems

QUIZ \# 4 SOLUTION
Ahmad F. Taha
September 14, 2015

Prove that the quadratic cost function given by

$$
f(x)=x^{\top} Q x, \quad Q=Q^{\top} \succeq 0
$$

is convex.

Solution: A function $f(x)$ is convex if:

$$
f(\alpha x+(1-\alpha) y) \leq \alpha f(x)+(1-\alpha) f(y)
$$

for all $0 \leq \alpha \leq 1$. Given that $f(x)=x^{\top} Q x$, we apply the definition of convex function. The condition can be written as:

$$
\alpha f(x)+(1-\alpha) f(y)-f(\alpha x+(1-\alpha) y) \geq 0
$$

Substituting for $f(x)$ into the LHS of the previous equation yields:

$$
\begin{gathered}
\alpha x^{\top} Q x+(1-\alpha) y^{\top} Q y-(\alpha x+(1-\alpha) y)^{\top} Q(\alpha x+(1-\alpha) y) \\
=\alpha(1-\alpha) x^{\top} Q x-2 \alpha(1-\alpha) x^{\top} Q y+\alpha(1-\alpha) y^{\top} Q y=\alpha(1-\alpha)(x-y)^{\top} Q(x-y) .
\end{gathered}
$$

Define $z=x-y$. We then obtain the following quadratic form:

$$
\alpha(1-\alpha) z^{\top} Q z
$$

Since $0 \leq \alpha \leq 1, Q=Q^{\top} \succeq$, and for any z,

$$
\alpha(1-\alpha) z^{\top} Q z \geq 0
$$

hence, the convexity definition of a function is satisfied.

