A dynamical CTLTI system is characterized by $A=\left[\begin{array}{ll}1 & 3 \\ 3 & 1\end{array}\right], C=\left[\begin{array}{ll}0.5 & 1\end{array}\right]$.

1. Find a linear state-observer gain $L=\left[\begin{array}{ll}l_{1} & l_{2}\end{array}\right]^{\top}$ such that the poles of the estimation error are -5 and -7 .
2. Can you place both poles at -6 ? If yes, what is the corresponding observer gain?

Solutions:

1. First, we find $A-L C$ in terms of l_{1} and l_{2} :

$$
A-L C=\left[\begin{array}{ll}
1-l_{1} / 2 & 3-l_{1} \\
3-l_{2} / 2 & 1-l_{2}
\end{array}\right]
$$

Since the roots of the designed observer are -5 and -7 , the desired characteristic polynomial is:

$$
\pi_{A-L C}=(\lambda+5)(\lambda+7)=\lambda^{2}+12 \lambda+35
$$

The characteristic polynomial in terms of l_{1} and l_{2} can be written as:

$$
+\lambda^{2}+\lambda \underbrace{\left(-2+\frac{l_{1}}{2}+l_{2}\right)}_{=12} \underbrace{-8+\frac{5 l_{1}}{2}+\frac{l_{2}}{2}}_{=35}=0
$$

Solving the following linear system of equations,

$$
\begin{aligned}
35 & =-8+\frac{5 l_{1}}{2}+\frac{l_{2}}{2} \\
12 & =-2+\frac{l_{1}}{2}+l_{2}
\end{aligned}
$$

we obtain $l_{1}=16$ and $l_{2}=6$.
2. Placing poles at $\lambda=-6$ means that

$$
\pi_{A-L C}=(\lambda+6)^{2}=\lambda^{2}+12 \lambda+36
$$

or,

$$
\begin{aligned}
& 44=\frac{5 l_{1}}{2}+\frac{l_{2}}{2} \\
& 14=\frac{l_{1}}{2}+l_{2}
\end{aligned}
$$

A solution to the above system of equations is $l_{1}=16.44$ and $l_{2}=5.77$.

