A function $\phi(x, u)$ is Globally Lipschitz (Lipschitz Continuous) with Lipschitz constant L if and only if:

$$
\left\|\boldsymbol{\phi}\left(x_{1}, u\right)-\boldsymbol{\phi}\left(x_{2}, u\right)\right\| \leq L\left\|x_{1}-x_{2}\right\|, \quad L \geq 0
$$

Find the Lipschitz constant for the following functions:

1. $\phi(x)=x^{4}$, if $x \in[-2,2]$. You will have to use the triangular inequality.

Hint 1: $b^{4}-a^{4}=(b-a)\left(b^{3}+b^{2} a+b a^{2}+a^{3}\right)$
2. $\phi(y, x)=\sqrt{y^{2}+x^{2}}$, with $x \in[-1,1]$. You should apply the definition on y here.

Hint 2: You will have to multiply by a fraction that allows you to use

$$
(\sqrt{a}-\sqrt{b})(\sqrt{a}+\sqrt{b})=a^{2}-b^{2}
$$

Hint 3: Also, don't forget that $\left|a^{2}-b^{2}\right|=|a-b||a+b|$.

