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Problem 1 — Convexity Property

A function f : Rn → R is continuously differentiable. Also, assume that f (x) is concave on a convex
set X . Given the aforementioned properties of f (x), prove that for all x1, x2 ∈ X , f (x) satisfies this
property:

f (x2) ≤ f (x1) + D f (x1)(x2 − x1).

Hint: Back to basics—what is the basic definition of a derivative?

Response. First assume f : R→ R is continously differentiable and concave (which implies its domain
X is convex). Since f is concave, for any t ∈ [0, 1] and x1, x2 ∈ X the following holds:

f (x1 + t(x2 − x1)) ≥ t f (x2) + (1− t) f (x1). (1)

We can easily rearrange (1) to obtain the following

f (x1 + t(x2 − x1))

t
− 1− t

t
f (x1) ≥ f (x2). (2)

which yields:

f (x1 + t(x2 − x1))− f (x1)

t
+ f (x1) ≥ f (x2). (3)

Taking the limit of both sides of (3) when t→ 0 yields the desired result:

f ′(x1)(x2 − x1) + f (x1) ≥ f (x2) ∀x1, x2 ∈ X . (4)

Now we prove the general case for f : Rn → R, f concave and differentiable. For a given x1, x2 ∈ X
define g(t) = f (x1 + t(x2− x1)) for t ∈ [0, 1]. Notice that g(1) = f (x1 + x2− x1) = f (x2), g(0) = f (x1)
and g′(0) = D f (x1)(x2 − x1). Also notice that g(t) is concave since for any t1, t2 ∈ [0, 1] and θ ∈ [0, 1]
we have the following:

θt1 + (1− θ)t2 ≥ 0 (5)
θt1 + (1− θ)t2 ≤ θ + (1− θ)1 = 1 (6)

⇒θt1 + (1− θ)t2 ∈ [0, 1]. (7)

g(θt1 + (1− θ)t2) = f [x1 + (θt1 + (1− θ)t2)(x2 − x1)]

= f [θx1 + θt1(x2 − x1) + (1− θ)x1 + (1− θ)t2(x2 − x1)]

≥ θ f (x1 + t1(x2 − x1)) + (1− θ) f (x1 + t2(x2 − x1)) (due to concavity of f )
≥ θg(t1) + (1− θ)g(t2)(by definition of g(t)). (8)

Since g(t) is concave on t ∈ [0, 1] we can use the result in (4) for t1 = 0 and t2 = 1:

g(1) ≤ g′(0)(1− 0) + g(0)⇒ f (x2) ≤ D f (x1)(x2 − x1) + f (x1). (9)

This proof is almost identical to the proof of first-order conditions by Convex Optimization book by Boyd, except
that I prove why g is concave.
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Problem 2 — Convexity of a Disc

Show that the set Ω given by Ω = {y ∈ R2; ‖y‖2 ≤ 4} is convex, where ‖y‖2 = y>y.

Hint: Show that if z = βx + (1− β)y, then ‖z‖2 ≤ 4. You might find the submultiplicative matrix-
vector property to be useful too.

Response. Assume x, y ∈ Ω so we know ||x||2 ≤ 4 and ||y||2 ≤ 4. Also note that this implies ||x|| ≤ 2
and ||y|| ≤ 2. Now assume θ ∈ [0, 1] and let’s assess what the value of ||θx + (1− θ)y||2 will be.

||θx + (1− θ)y||2 = [θx + (1− θ)y]T [θx + (1− θ)y]

= θ2||x||2 + 2θ(1− θ)xTy + (1− θ)2||y||2 (10)

≤ θ2 × 4 + 2θ(1− θ)xTy + (1− θ)2 × 4. (11)

Due to Cauchy-Shwartz inequality, we know that xTy ≤ ||x||||y|| ≤ 2× 2 = 4. Hence we can extend
(11) to the following:

||θx + (1− θ)y||2 ≤ θ2 × 4 + 2θ(1− θ)× 4 + (1− θ)2 × 4

= 4(θ2 + 2θ(1− θ) + (1− θ)2) = 4(θ + 1− θ)2 = 4 (12)

Hence ||θx + (1− θ)y||2 ≤ 4 which means θx + (1− θ)y ∈ Ω.
I did not use the hint since I didn’t know what sub-multiplicative property was.

Problem 3 — Minimizing a Function

Given a multivariable function f (x), many optimization solvers use the following algorithm to solve
minx f (x):

1. Choose an initial guess, x(0)

2. Choose an initial real, symmetric positive definite matrix H(0)

3. Compute d(k) = −H(k)∇x f (x(k))

4. Find β(k) = arg minβ f (x(k) + β(k)d(k)), β ≥ 0

5. Compute x(k+1) = x(k) + β(k)d(k)

For this problem, we assume that the given function is a typical quadratic function (x ∈ Rn), as follows:

f (x) =
1
2

x>Qx− x>b + c, Q = Q> � 0.

Answer the following questions:

1. Find f (x(k) + β(k)d(k)) for the given quadratic function.

2. Obtain ∇x f (x(k)) for f (x).

3. Using the chain rule, and given that β(k) = arg minβ f (x(k) + β(k)d(k)), find a closed form solution

for β(k) in terms of the given matrices (H(k),∇ f (x(k)), d(k), Q).

4. Since it is required that β(k) ≥ 0, provide a sufficient condition related to H(k) that guarantees the
aforementioned condition on β(k).

Response.
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1.

f (x(k) + β(k)d(k)) =
1
2
[x(k) + β(k)d(k)]TQ[x(k) + β(k)d(k)]− [x(k) + β(k)d(k)]Tb + c. (13)

2.

∇x f (x(k)) = Qx(k) − b. (14)

3. We find β(k) by setting the derivative of (13) to zero, which results in the following equation:

(x(k))TQd
(k)

+ β(k)(d(k))TQd(k) − (d(k))Tb = 0 (15)

In (15), we replace d(k) with its equivalent d(k) = −H(k)∇x f (x(k)), which will yield the following:

β(k)[H(k)∇x f (x(k))]TQ[H(k)∇x f (x(k))] = (x(k))TQ[H(k)∇x f (x(k))]− bT [H(k)∇x f (x(k))] (16)

→ β(k) =
[(x(k))TQ− bT ]H(k)∇x f (x(k))

[H(k)∇x f (x(k))]TQ[H(k)∇x f (x(k))]
. (17)

Notice in (17) that (x(k))TQ− bT = ∇x f (x(k))T according to (14). Finally we find the best β(k) as:

β(k) =
∇x f (x(k))T H(k)∇x f (x(k))

[H(k)∇x f (x(k))]TQ[H(k)∇x f (x(k))]
. (18)

4. Since Q � 0, the denominator of (18) is always positive. Therefore, in order to have β(k) ≥ 0, it is
sufficient to have H(K) � 0.

Problem 4 — KKT Conditions, 1

Using the KKT conditions discussed in class, obtain all the candidate strict local minima for the follow-
ing nonlinear optimization problem:

max −x2
1 − 2x2

2

subject to x1 + x2 ≥ 3

x2 − x2
1 ≥ 1

There are many cases to consider. Make sure that you don’t miss any.

After solving the problem analytically, code the problem on NEOS solver (http://www.neos-server.
org/neos/solvers/index.html), using any solver of your choice and any modeling language (GAMS,
AMPL, ...). Show your code and outputs.

Response. We can write the problem as a minimization problem and convert it to a standard form
(for using Lagrange multipliers):

min x2
1 + 2x2

2

subject to −x1 − x2 + 3 ≤ 0← µ1

x2
1 − x2 + 1 ≤ 0← µ2

The Lagrangian is given as:

L(x, µ1, µ2) = x2
1 + 2x2

2 + µ1(−x1 − x2 + 3) + µ2(x2
1 − x2 + 1) (19)

The KKT conditions:

1.

∇xL(x, µ1, µ2) =

[
2x1 − µ1 + 2µ2x1

4x2 − µ1 − µ2

]
=

[
0
0

]
. (20)
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2.

µ1, µ2 ≥ 0. (21)

3.

µ1(−x1 − x2 + 3) = 0 (22)

µ2(x2
1 − x2 + 1) = 0. (23)

4.

−x1 − x2 + 3 ≤ 0 (24)

x2
1 − x2 + 1 ≤ 0. (25)

5. ∇2
xL is always positive semidefinite since µ2 ≥ 0.

∇2
xL =

[
2 + 2µ2 0

0 4

]
� 0. (26)

We solve the KKT conditions by conditioning µ1, µ2 based on (22) and (23), and solving the remain-
ing equations as follows:

1. Case µ1 = µ2 = 0→ x1 = 0, x2 = 0. This is not acceptable since (24) and (25) are violated.

2. Case µ1 = 0→ µ2 = 4→ x1 = 0, x2 = 1. This is not acceptable since (24) is violated.

3. Case µ2 = 0→ µ1 = 4→ x1 = 2, x2 = 1. This is not acceptable since (25) is violated.

4. Case µ1, µ2 6= 0. In this case, due to (22) and (23) we have:

−x1 − x2 + 3 = 0 (27)

x2
1 − x2 + 1 = 0 (28)

The system above has two sets of answers:

(a) x1 = −2, x2 = 5 → µ1 = 28, µ2 = −8. This is not acceptable since it contradicts condition
(21).

(b) x1 = 1, x2 = 2→ µ1 = 6, µ2 = 2. This is an acceptable answer.

To summarize, we found that x1 = 1, x2 = 2 is the minimizer (or the maximizer for the original
problem). Since the problem is convex (concave for the original), this minimizer is the global minimum
of the problem. The code for this problem is pasted below (using AMPL with Filter in NEOS):

# model f i l e :
var x1 ;
var x2 ;

minimize c :
x1 ˆ2+2∗ x2 ˆ 2 ;

s u b j e c t to A:
x1+x2>=3;

s u b j e c t to B :
x2−x1 ˆ2>=1;

# command f i l e :
so lve ;
display x1 , x2 ;
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# NEOS email :
Using 64 b i t binary
F i l e e x i s t s
You are using the s o l v e r f i l t e r .
Executing AMPL.
process ing data .
process ing commands .
Executing on neos−5.neos−server . org

2 v a r i a b l e s , a l l nonl inear
2 c o n s t r a i n t s ; 4 nonzeros

1 nonl inear c o n s t r a i n t
1 l i n e a r c o n s t r a i n t
2 i n e q u a l i t y c o n s t r a i n t s

1 nonl inear o b j e c t i v e ; 2 nonzeros .

f i l t e r S Q P ( 2 0 0 2 0 3 1 6 ) : Optimal s o l u t i o n found , o b j e c t i v e = 9
4 i t e r a t i o n s (0 f o r f e a s i b i l i t y )
Evals : ob j = 5 , c o n s t r = 6 , grad = 6 , Hes = 5
x1 = 1
x2 = 2

Problem 5 — KKT Conditions, 2

Using the KKT conditions discussed in class, obtain all the candidate strict local minima for the follow-
ing nonlinear optimization problem:

min x1 + x2
2

subject to x1 − x2 = 5

x2
1 + 9x2

2 ≤ 36

There are many cases to consider. Make sure that you don’t miss any.

After solving the problem analytically, code the problem on NEOS solver, using any solver of your
choice. Show your code and outputs.

Response.

min x1 + x2
2

subject to x1 − x2 = 5← λ

x2
1 + 9x2

2 ≤ 36← µ

The Lagrangian is as follows:

L(x, λ, µ) = x1 + x2
2 + λ(x1 − x2 − 5) + µ(x2

1 + 9x2
2 − 36) (29)

The KKT conditions are given:

1.

∇xL(x, λ, µ) =

[
1 + λ + 2µx1

2x2 − λ + 18µx2

]
=

[
0
0

]
(30)

2.

µ ≥ 0 (31)
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3.

µ(x2
1 + 9x2

2 − 36) = 0 (32)

4.

x2
1 + 9x2

2 − 36 ≤ 0 (33)

5.

x1 − x2 − 5 = 0 (34)

6. ∇2
xL(x, λ, µ) � 0 always holds since µ ≥ 0.

∇2
xL(x, λ, µ) =

[
2µ 0
0 2 + 18µ

]
� 0. (35)

We solve this problem by conditioning µ using (32):

1. Case µ = 0 → λ = −1, x1 = 9
2 , x2 = − 1

2 . This is acceptable since it does not violate any other
KKT.

2. Case µ 6= 0. Thus we have the following system:

x2
1 + 9x2

2 = 36 (36)
x1 = x2 + 5 (37)

This system has two sets of solutions, both of which are not acceptable:

(a) x1 = 45
10 +

√
135
10 , x2 = −5

10 +
√

135
10 → µ = −1−2x2

2x1+18x2
< 0.

(b) x1 = 45
10 −

√
135
10 , x2 = −5

10 −
√

135
10 → µ = −1−2x2

2x1+18x2
< 0.

The code for this problem is pasted below:

# model f i l e :
var x1 ;
var x2 ;

minimize c :
x1+x2 ˆ 2 ;

s u b j e c t to A:
x1−x2−5=0;

s u b j e c t to B :
x1 ˆ2+9∗ x2ˆ2−36<=0;

# command f i l e :
so lve ;
display x1 , x2 ;

# NEOS email :
Using 64 b i t binary
F i l e e x i s t s
You are using the s o l v e r f i l t e r .
Executing AMPL.
process ing data .
process ing commands .
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Executing on neos−5.neos−server . org

2 v a r i a b l e s , a l l nonl inear
2 c o n s t r a i n t s ; 4 nonzeros

1 nonl inear c o n s t r a i n t
1 l i n e a r c o n s t r a i n t
1 e q u a l i t y c o n s t r a i n t
1 i n e q u a l i t y c o n s t r a i n t

1 nonl inear o b j e c t i v e ; 2 nonzeros .

f i l t e r S Q P ( 2 0 0 2 0 3 1 6 ) : Optimal s o l u t i o n found , o b j e c t i v e = 4 . 7 5
1 i t e r a t i o n s (0 f o r f e a s i b i l i t y )
Evals : ob j = 2 , c o n s t r = 3 , grad = 3 , Hes = 2
x1 = 4 . 5
x2 = −0.5

Problem 6 — Convexity Range

For the following function, find the set of values for β such that the function is convex.

f (x, y, z) = x2 + y2 + 5z2 − 2xz + 2βxy + 4yz

Response. We can organize f (x, y, z) as f (x, y, z) = [x, y, z]P

x
y
z

 where

P =

 1 β −1
β 1 2
−1 2 5

 . (38)

For f (x, y, z) to be convex, P needs to be postivie semidefinite. Necessary and sufficient condition
for positive semidefinite symmetic matrices is that all of its principal minors be non-negative. Matrix
P is a 3× 3 matrix and has 7 principal minors, 5 of which are independent of β and (straightforward to
check) positive. Only the determinant, and one of the principal minors of order 2 are dependent on β:

∆3 = det(P) =
∣∣∣∣1 2
2 5

∣∣∣∣− β

∣∣∣∣ β 2
−1 5

∣∣∣∣+ (−1)
∣∣∣∣ β 1
−1 2

∣∣∣∣ ≥ 0→ −4
5
≤ β ≤ 0 (39)

∆2 = 1− β2 ≥ 0→ −1 ≤ β ≤ 1. (40)

Thus, for − 4
5 ≤ β ≤ 0 the function is convex.

Problem 7 — CVX Programming

The objective of this problem is to get you started with CVX—the convex optimization solver on MAT-
LAB. Do the following:

1. Watch this CVX introductory video: https://www.youtube.com/watch?v=N2b_B4TNfUM

2. Download and install CVX on your machine: http://cvxr.com/cvx/download/

3. Read the first few pages of the CVX User’s Guide: http://web.cvxr.com/cvx/doc/

4. Solve Problems 4 and 5 using CVX. Show your code and outputs.

Response. Code for problem 4:
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cvx begin
v a r i a b l e s x1 x2

maximize(−x1−2∗x2 ˆ 2 )
s u b j e c t to :

x1+x2>=3;
x2−x1 ˆ2>=1;
cvx end

% −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
% S t a t u s : Solved
% Optimal value ( cvx optval ) : −9
%
%
% x1 =
%
% 1.0000
%
% x2 =
%
% 2.0000

Code for problem 5:

cvx begin
v a r i a b l e s x1 x2

minimize ( x1+x2 ˆ 2 )
s u b j e c t to :

x1−x2−5==0
x1+9∗x2ˆ2−36<=0;
cvx end

%
% −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
% S t a t u s : Solved
% Optimal value ( cvx optval ) : +4.75
%
%
% x1 =
%
% 4.5000
%
%
% x2 =
%
% −0.5000
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Problem 8 — Solving LMIs using CVX

Using CVX, solve the following LMI for P:

A>P + PA < 0
B>P + PB < 0

P = P> > 0.1I, where:

A =

[
−3 1
0 −1

]
B =

[
−2 0
1 −1

]
Show your code and outputs.

What happens if you try to solve the same LMI when B =

[
−2 3
1 −1

]
?

Justify the results.
Response.

For B =

[
−2 0
1 −1

]
:

A=[−3 1 ; 0 −1];
B=[−2 0 ; 1 −1];
cvx begin sdp
v a r i a b l e P ( 2 , 2 ) symmetric ;

minimize ( 0 )
s u b j e c t to :

A. ’ ∗P +P∗A < 0 ;
B . ’ ∗P+P∗B < 0 ;
P >= 0 . 1∗ eye ( 2 ) ;

cvx end

% −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
% S t a t u s : Solved
% Optimal value ( cvx optval ) : +0

% eig (A. ’ ∗P +P∗A )
%
% ans =
%
% −17.8518
% −10.2769

% eig ( B . ’ ∗P+P∗B )
%
% ans =
%
% −14.6261
% −7.6468
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% eig ( P )
%
% ans =
%
% 2.6109
% 6.6896

For B =

[
−2 3
1 −1

]
:

A=[−3 1 ; 0 −1];
B=[−2 3 ; 1 −1];
cvx begin sdp
v a r i a b l e P ( 2 , 2 ) symmetric ;

minimize ( 0 )
s u b j e c t to :

A. ’ ∗P +P∗A < 0 ;
B . ’ ∗P+P∗B < 0 ;
P >= 0 . 1∗ eye ( 2 ) ;

cvx end

% −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
% S t a t u s : I n f e a s i b l e
% Optimal value ( cvx optval ) : + I n f

According to Lyapenov’s theorem, real parts of the eigenvalues of matrices A, B are negative if and
ONLY if there exists a symmetric positive definite matrix P such that:

A>P + PA < 0 (41)

B>P + PB < 0. (42)

The B in the first problem has negative eigenvalues and hence there exists a positive definite matrix P.
The B in the second problem has a positive eigenvalue and hence the problem will become infeasible.

e ig ([−2 0 ; 1 −1])
ans =

−1
−2

e ig ([−2 3 ; 1 −1])

ans =

−3.3028
0 .3028
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