The objective of this homework is to test your understanding of the content of Module 3. Due date of the homework is: Friday, February 5th, 2016.

You have to upload a scanned version of your solutions on Blackboard. If you don't have a scanner around you, you can use Cam Scanner-a mobile app that scans images in a neat way, as if they're scanned through a copier. Here's the link for Cam Scanner: https://www.camscanner.com/user/ download.

1. Linearize the following equation around $x_{0}=\pi / 2$:

$$
y=f(x)=x^{1 / 3}+\cos (x)
$$

Solution:

$$
y_{\text {linear }}=f\left(x_{0}\right)+\left.\frac{\partial f(x)}{\partial x}\right|_{x=x_{0}} \cdot\left(x-x_{0}\right)=(\pi / 2)^{1 / 3}+\left(\frac{1}{3}(\pi / 2)^{-\frac{2}{3}}-1\right)(x-\pi / 2)
$$

2. For this circuit:

find,
(a) $\frac{V_{2}(s)}{V_{1}(s)}$ for any R, L, C.

Solution: The figure below shows the impedance illustration of the given circuit.

Given that, the equivalent impedance in this circuit is:

$$
Z_{e q}=s L+R \|(1 / s C)=\frac{R L C s^{2}+L s+R}{R C s+1}
$$

Note that

$$
\frac{V_{2}(s)}{V_{1}(s)}=\frac{Z_{R \| C}}{Z_{e q}}=\frac{R}{R L C s^{2}+s L+R}
$$

(b) $v_{2}(t)$ if $R=1, L=1, C=1$, and
i. $v_{1}(t)=\delta(t)$, or
ii. $v_{1}(t)=5$.

Solution: First, we substitute the value of the circuit elements in the transfer function obtained above; we get:

$$
V_{2}(s)=\frac{V_{1}(s)}{s^{2}+s+1}
$$

For $v_{1}(t)=\delta(t), V_{1}(s)=1$, and hence:

$$
v_{2}(t)=\mathcal{L}^{-1}\left[\frac{1}{s^{2}+s+1}\right]=\frac{2 \sqrt{3}}{3} e^{-\frac{t}{2}} \sin (0.5 \sqrt{3} t)
$$

See Module 02 and the recitation session notes for more on that (or you can check the Laplace table). For $v_{1}(t)=5, V_{1}(s)=5 / s$, and hence:

$$
v_{2}(t)=\mathcal{L}^{-1}\left[\frac{1}{(s)\left(s^{2}+s+1\right)}\right]=1-0.5 \cos (\sqrt{3} t)+\frac{\sqrt{3}}{3} e^{-\frac{t}{2}} \sin (0.5 \sqrt{3} t)
$$

