

Defs. OLTF $=G(s) H(s) ; n_{p}, n_{z}=$ number of poles, zeros of OLTF; Characteristic Polynomial $(\mathrm{CP})=1+K G(s) H(s)$

$$
\Rightarrow 1+K G(s) H(s)=0 \Rightarrow K(s)=\frac{-1}{G(s) H(s)}
$$

Rule 1 RL is always symmetric with respect to the real-axis-remember that
Rule 2 RL has n branches, $n=n_{p}$
Rule 3 Mark poles (n_{p}) and zeros $\left(n_{z}\right)$ of $G(s) H(s)$ with ' x^{\prime} and 'o'
Rule 4 Each branch starts at OLTF poles $(K=0)$, ends at OLTF zeros or at infinity $(K=\infty)$
Rule 5 RL has branches on x-axis. These branches exist on real axis portions where the total \# of poles + zeros to the right is an odd \#

Rule 6 Asymptotes angles: RL branches ending at OL zeros at ∞ approach the asymptotic lines with angles:

$$
\phi_{q}=\frac{(1+2 q) 180}{n_{p}-n_{z}} \mathrm{deg}, \forall q=0,1,2, \ldots, n_{p}-n_{z}-1
$$

Rule 7 Real-axis intercept of asymptotes:

$$
\sigma_{A}=\frac{\sum_{i=1}^{n_{p}} \operatorname{Re}\left(p_{i}\right)-\sum_{j=1}^{n_{z}} \operatorname{Re}\left(z_{j}\right)}{n_{p}-n_{z}}
$$

Rule 8-1 RL branches intersect the real-axis at points where K is at an extremum for real values of s. Remember that:

$$
1+K G(s) H(s)=0 \Rightarrow K(s)=\frac{-1}{G(s) H(s)}
$$

We find the breakaway points by finding solutions (i.e., s^{*} solutions) to:

$$
\frac{d K(s)}{d s}=0=-\frac{d}{d s}\left[\frac{1}{G(s) H(s)}\right]=0 \Rightarrow \frac{d}{d s}[G(s) H(s)]=0 \Rightarrow \text { obtain } s^{*}
$$

Rule 8-2 After finding s^{*} solutions (you can have a few), check whether the corresponding $K\left(s^{*}\right)=\frac{-1}{G\left(s^{*}\right) H\left(s^{*}\right)}=K^{*}$ is real positive \#
Rule 8-3 Breakaway pt.: $K_{\max }^{*}\left(-v e K^{\prime \prime}\left(s^{*}\right)\right)$, Break-in pt: $K_{\min }^{*}\left(+v e K^{\prime \prime}\left(s^{*}\right)\right)$
Rule 9 Angle of Departure (AoD): defined as the angle from a complex pole or Angle of Arrival (AoA) at a complex zero:

$$
\begin{aligned}
& \text { AoD from a complex pole : } \phi_{p}=180-\sum_{i} \angle p_{i}+\sum_{j} \angle z_{j} \\
& \qquad \text { AoA at a complex zero : } \phi_{z}=180+\sum_{i} \angle p_{i}-\sum_{j} \angle z_{j}
\end{aligned}
$$

$-\sum_{i} \angle p_{i}$ is the sum of all angles of vectors to a complex pole in question from other poles, $\sum_{j} \angle z_{j}$ is the sum of all angles of vectors to a complex pole in question from other zeros

- ' \angle ' denotes the angle of a complex number

Rule 10 Determine whether the RL crosses the imaginary y-axis by setting:

$$
1+K G(s=j \omega) H(s=j \omega)=0+0 i
$$

and finding the ω and K that solves the above equation. The value of ω you get is the frequency at which the RL crosses the imaginary y-axis and the K you get is the associated gain for the controller. You should obtain two equations (real $=0$ and imaginary $=0$) with two unknowns (K, ω). From there, you solve for K, ω pairs

