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Pontryagin’s Minimum Principle1

In this handout, we provide a derivation of the minimum principle of Pontryagin, which is

a generalization of the Euler-Lagrange equations that also includes problems with constraints

on the control inputs. Only a special case of the minimum principle is stated. However, this

special case covers a large class of control problems. We consider the problem of minimizing

the performance index given by

J = Φ(x(tf )) +

∫ tf

t0

F (x(t),u(t))dt (1)

subject to

ẋ = f(x,u), x(t0) = x0, and x(tf ) = xf . (2)

We consider two cases: fixed final state and free final state.

To proceed we define the Hamiltonian function H(x,u,p) as

H(x,u,p) = H = F + p⊤f ,

where the costate vector p will be determined in the analysis to follow.

We discuss the case when the final time tf is fixed. We follow the development of

Luenberger [1, Section 11.1]. We “adjoin” to J additional terms that sum up to zero. We

note that because the state trajectories must satisfy the equation, ẋ = f(x,u), we have

f(x,u) − ẋ = 0. (3)

We introduce the modified objective performance index,

J̃ = J +

∫ tf

t0

p(t)⊤(f(x,u) − ẋ) dt. (4)
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Because for any state trajectory, (3) is satisfied, for any choice of p(t) the value of J̃ is the

same as that of J . Therefore, we can express J̃ as

J̃ = Φ(x(tf )) +

∫ tf

t0

F (x(t),u(t)) dt +

∫ tf

t0

p(t)⊤(f(x,u) − ẋ) dt

= Φ(x(tf )) +

∫ tf

t0

(H(x,u,p) − p⊤ẋ) dt. (5)

Let u(t) be a nominal control strategy; it determines a corresponding state trajectory x(t).

If we apply another control strategy, say v(t), that is “close” to u(t), then v(t) will produce a

state trajectory close to the nominal trajectory. This new state trajectory is just a perturbed

version of x(t) and it can be represented as

x(t) + δx(t).

The change in the state trajectory yields a corresponding change in the modified performance

index. We represent this change as δJ̃ ; it has the form,

δJ̃ = Φ(x(tf ) + δx(tf )) − Φ(x(tf )) +

∫ tf

t0

(H(x + δx,v,p) − H(x,u,p) − p⊤δẋ) dt. (6)

We evaluate the integral above. Integrating by parts gives

∫ tf

t0

p⊤δẋ dt = p(tf )
⊤δx(tf ) − p(t0)

⊤δx(t0) −

∫ tf

t0

ṗ⊤δx dt. (7)

Note that δx(t0) = 0 because a change in the control strategy does not change the initial

state. Taking into account the above, we represent (6) as

δJ̃ = Φ(x(tf ) + δx(tf )) − Φ(x(tf )) − p(tf )
⊤δx(tf )

+

∫ tf

t0

(H(x + δx,v,p) − H(x,u,p) + ṗ⊤δx) dt.

We next replace (Φ(x(tf ) + δx(tf )) − Φ(x(tf ))) with its first-order approximation, and add

and subtract the term H(x,v,p) under the integral to obtain

δJ̃ =
(

∇xΦ|t=tf
− p(tf )

)⊤

δx(tf )

+

∫ tf

t0

(H(x + δx,v,p) − H(x,v,p) + H(x,v,p) − H(x,u,p) + ṗ⊤δx) dt.
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Replacing (H(x + δx,v,p) − H(x,v,p)) with its first-order approximation,

H(x + δx,v,p) − H(x,v,p) =
∂H

∂x
δx,

gives

δJ̃ =
(

∇xΦ|t=tf
− p(tf )

)⊤

δx(tf )

+

∫ tf

t0

((

∂H

∂x
+ ṗ⊤

)

δx + H(x,v,p) − H(x,u,p)

)

dt.

Selecting in the above p as the solution to the differential equation

∂H

∂x
+ ṗ⊤ = 0⊤

with the final condition

p(tf ) = ∇xΦ|t=tf
,

reduces δJ̃ to

δJ̃ =

∫ tf

t0

(H(x,v,p) − H(x,u,p)) dt.

If the original control u(t) is optimal, then we should have δJ̃ ≥ 0, that is, H(x,v,p) ≥

H(x,u,p). We summarize our development in the following theorem.

Theorem 1 Necessary conditions for u ∈ U to minimize (1) subject to (2) are:

ṗ = −

(

∂H

∂x

)⊤

,

where H = H(x,u,p) = F (x,u) + p⊤f(x,u),

H(x∗,u∗,p∗) = min
u∈U

H(x,u,p).

If the final state, x(tf ), is free, then in addition to the above conditions it is required that

the following end-point condition is satisfied,

p(tf ) = ∇xΦ|t=tf
.
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The equation,

ṗ = −

(

∂H

∂x

)⊤

(8)

is called in the literature the adjoint or costate equation.

We illustrate the above theorem with the following well-known example.

Example 1 We consider a controlled object modeled by




ẋ1

ẋ2



 =





0 1

0 0









x1

x2



 +





0

1



u

= Ax + bu

with the performance index

J =

∫ tf

0

dt.

The control is required to satisfy

|u(t)| ≤ 1

for all t ∈ [0, tf ]. This constraint means that the control must have magnitude no greater

than 1. Our objective is to find admissible control that minimizes J and transfers the system

from a given initial state x0 to the origin.

We begin by finding the Hamiltonian function for the problem,

H = 1 + p⊤(Ax + bu)

= 1 +
[

p1 p2

]









0 1

0 0









x1

x2



 +





0

1



u





= 1 + p1x2 + p2u.

The costate equations are




ṗ1

ṗ2



 = −





∂H
∂x1

∂H
∂x2



 =





0

−p1



 .

Solving the costate equations yields

p1 = d1 and p2 = −d1t + d2,

4



where d1 and d2 are integration constants. We now find an admissible control minimizing

the Hamiltonian,

argu min H = argu min(1 + p1x2 + p2u)

= argu min(p2u)

=



















u(t) = 1 if p2 < 0

u(t) = 0 if p2 = 0

u(t) = −1 if p2 > 0.

Hence,

u∗(t) = −sign(p∗
2
) = −sign(−d1t + d2),

where the signum function is defined as

sign(z) =



















1 if z > 0

0 if z = 0

−1 if z < 0.

Thus, the optimal control law is piecewise constant taking the values 1 or −1. This control

law has at most two intervals of constancy because the argument of the sign function is a

linear function, −d1t + d2, that changes its sign at most once. This type of control is called

a bang-bang control because it switches back and forth between its extreme values. System

trajectories for u = 1 and u = −1 are families of parabolas. Segments of the two parabolas

through the origin form the switching curve,

x1 = −
1

2
x2

2
sign(x2).

This means that if an initial state is above the switching curve, then u = −1 is used until

the switching curve is reached. Then, u = 1 is used to reach the origin. For an initial state

below the switching curve, the control u = 1 is used first to reach the switching curve, and

then the control is switched to u = −1. We implement the above control action as

u = −sign(v) =



















1 if v < 0

0 if v = 0

−1 if v > 0,
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Figure 1: A phase-plane portrait of the time optimal closed-loop system of Example 1.

where v = v(x1, x2) = x1 + 1

2
x2

2
sign(x2) = 0 is the equation describing the switching curve.

We can use the above equation to synthesize a closed-loop system such that starting at an

arbitrary initial state in the state plane, the trajectory will always be moving in an optimal

fashion towards the origin. Once the origin is reached, the trajectory will stay there. A

phase portrait of the closed-loop time optimal system is given in Figure 1.
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