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a b s t r a c t

This paper aims to design full-order and reduced-order observers for one-sided Lipschitz
nonlinear systems. The system under consideration is an extension of its known Lipschitz
counterpart and possesses inherent advantages with respect to conservativeness. For such
system, we first develop a novel Riccati equation approach to design a full-order observer,
for which rigorous mathematical analysis is performed. Consequently, we show that the
conditions under which a full-order observer exists also guarantee the existence of a
reduced-order observer. A design method for the reduced-order observer that is dependent
on the solution of the Riccati equation is then presented. The proposed conditions are eas-
ily and numerically tractable via standard numerical software. Furthermore, it is theoreti-
cally proven that the obtained conditions are less conservative than some existing ones in
recent literature. The effectiveness of the proposed observers is illustrated via a simulative
example.

� 2012 Elsevier B.V. All rights reserved.
1. Introduction

During the past decades, state estimation or observers have been widely used in system control and many other areas
such as energy systems, fault detection and isolation, chaos-based secure communication, etc. [1–6]. Recent efforts are fo-
cused on the observer design of nonlinear systems [7,8]. Generally, there are two basic approaches for nonlinear observer
design. The first approach is based on a nonlinear coordinate transformation by which the error dynamics admits a linear
form, thus the design of state observer can be carried out by using linear techniques [1,9]. Another approach does not need
the transformation and the design is directly based on the original system [2,3,7,8]. The latter is also called the directly
designing method, which has been popularly used in the existing references. In practice, many real systems are global Lips-
chitz, or at least locally Lipschitz, which has motivated the increasing attention in designing observers for Lipschitz systems.
Thau [10] first obtained a sufficient condition ensuring asymptotical stability of the observer error dynamics. Rajamani [11]
derived the existence conditions of the full-order observers for Lipschitz systems. Zhu and Han [12] showed that the condi-
tions given in [11] also guarantee the existence of a reduce-order observer. Robust observer for Lipschitz nonlinear systems
subject to disturbances was designed in [13]. In [14–16], observer synthesis conditions for Lipschitz discrete-time systems
and Lipschitz descriptor systems were investigated, respectively.

Most of the above results are dealt with the Lipschitz nonlinearities. However, a major limitation in the existing results is
that they usually work only for the small Lipschitz constant. When the Lipschitz constant becomes large, most of the existing
. All rights reserved.
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results fail to provide a solution (see, e.g., [17,18]). In mathematics, in order to overcome this drawback, the Lipschitz con-
tinuity has been generalized to one-sided Lipschitz continuity [19,20]. For many problems, the one-sided Lipschitz constant
is significantly smaller than the usual Lipschitz constant, which makes it much more suitable for estimating the influence of
nonlinear part (see, e.g., [15,17,19–22]).

Recently, the superiority of the one-sided Lipschitz continuity has received increasing attention in nonlinear observer de-
sign. Hu [23] first proposed asymptotical stability conditions of the error dynamics for one-sided Lipschitz systems. Re-
duced-order observers for such systems were given in Xu et al. [24]. Improved results on this topic could be found in
[25,26]. In these references, however, the results focused on analyzing the stability of the error dynamics for a given obser-
ver, and the design problem was left as an open problem. Very recently, Abbaszadeh and Marquez [17] addressed the obser-
ver design problem for one-sided Lipschitz nonlinear systems. They provided a solution via solving a class of nonlinear
matrix inequalities (NMIs). Some linear algebra techniques were employed in [17] to obtain the NMI condition. The authors
also converted the NMI condition into a linear matrix inequality (LMI) for the sake of simple calculation.

In this paper, inspired by [17], we revisit the problem of observer design for one-sided Lipschitz nonlinear systems. We
address both full-order and reduced-order observers design problems. A new sufficient condition ensuring the existence of
full-order state observers is presented by using a novel Riccati equation approach. The condition can be easily solved via
standard numerical software. Furthermore, we show that the conditions under which a full-order observer exists also guar-
antee the existence of a reduced-order observer. A design method for the reduced-order observer that is dependent on the
solution of the Riccati equation is then presented. Moreover, we prove that the proposed conditions are less conservative
than those given in [17].

The rest of the paper is organized as follows. Section 2 introduces the preliminaries. In Section 3, we present a Riccati-type
condition that ensures the asymptotical stability of the full-order observer error dynamics system. The reduced-order obser-
ver design of the one-sided Lipschitz nonlinear systems is given in Section 4. The efficiency of the approach is shown through
an illustrative example in Section 5. Finally, Section 6 draws the conclusions.

Notations: Rn denotes the n-dimensional real Euclidean space. Rm�n represents the set of all m� n real matrices. h�; �i is the
inner product in Rn, i.e., given x; y 2 Rn, then hx; yi ¼ xT y, where xT is the transpose of x 2 Rn. �k k denotes the Euclidean norm
in Rn. For a symmetric matrix S, S > 0 (S < 0) means that the matrix is positive definite (negative definite). kminðSÞ and kmaxðSÞ
are the minimum and maximum eigenvalues of the symmetric matrix S, respectively. rmaxðSÞ denotes the maximum singular
value of the matrix S. In symmetric block matrices, an asterisk ‘�’ represents a term induced by symmetry. I is an identity
matrix with appropriate dimension.

2. Preliminaries

Consider a class of nonlinear dynamical systems described by
_xðtÞ ¼ AxðtÞ þUðx;uÞ
yðtÞ ¼ CxðtÞ

�
ð1Þ
where x 2 Rn is the state, u 2 Rm is the input, y 2 Rp is the output, A 2 Rn�n, and C 2 Rp�n. Recall that the nonlinear function
Uðx;uÞ is said to be locally Lipschitz in a region D including the origin with respect to x, uniformly in u, if there exists a con-
stant c > 0 satisfying
Uðx1;u�Þ �Uðx2;u�Þk k 6 c x1 � x2k k; 8x1; x2 2 D; ð2Þ
where u� is any admissible control and c is called the Lipschitz constant. If the condition (2) is valid everywhere in Rn, then the
function Uðx;uÞ is said to be globally Lipschitz. Uðx;uÞ is said to be one-sided Lipschitz if there exist q 2 R such that 8x1; x2 2 D
hUðx1;u�Þ �Uðx2;u�Þ; x1 � x2i 6 q x1 � x2k k2; ð3Þ
where q 2 R is called the one-sided Lipschitz constant [17]. By definition, it is easy to see that any Lipschitz function is also
one-sided Lipschitz [14]. Next concept is quadratic inner-boundedness of the function Uðx; uÞ, i.e., for 8x1; x2 2 ~D, if there ex-
ist d;u 2 R such that
Uðx1;uÞ �Uðx2;uÞð ÞT Uðx1;uÞ �Uðx2;uÞð Þ 6 d x1 � x2k k2 þuhx1 � x2;Uðx1;uÞ �Uðx2;uÞi; ð4Þ
then Uðx;uÞ is called quadratic inner-boundedness in the region ~D. It is easy to see that the Lipschitz continuity implies qua-
dratic inner-boundedness. However, the converse is not true [17]. Note that u in (4) can be any real number. In fact, if u is
restricted to be positive, then U must be Lipschitz.

As usual, we consider the following full-order Luenberger-like observer for system (1)
_̂xðtÞ ¼ Ax̂ðtÞ þUðx̂;uÞ þ Lðy� Cx̂Þ: ð5Þ
Let eðtÞ ¼ xðtÞ � x̂ðtÞ. Then the error dynamics of the observer are given by
_eðtÞ ¼ ðA� LCÞeðtÞ þU� Û; ð6Þ
where U , Uðx;uÞ and Û , Uðx̂;uÞ. From (4), we know that the following inequality holds for the estimation error
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ðU� ÛÞTðU� ÛÞ 6 d eðtÞk k2 þueTðtÞðU� ÛÞ: ð7Þ
Our design goal is to find an observer gain L such that the error dynamics (6) is asymptotically stable assuming that U
satisfies (3) and (4). Recently, the authors in [17] proposed an LMI solution for this full-order observer design problem.
We list it as follows.

Proposition 1 [17]. Suppose that system (1) satisfies the conditions (3) and (4) with constants q, d and u, and the observer holds
the form of (5). Then the error dynamic is asymptotically stable if there exist a matrix L and positive scalars a > 0 and 0 < k < 1
such that the following matrix inequalities problem is feasible:
1
2a ðk� nÞI ðA� LCÞT

A� LC 1
2a ðk� nÞI

" #
> 0; ð8Þ

uþ 2a > 0; k > 1� 1
a2 ; ð9Þ
where n ¼ ðdþ 1Þ þ qðuþ 2aÞ.
Lemma 1 [27]. Let f ð�Þ be a given polynomial. If k is an eigenvalue of A 2 Rn�n, then f ðkÞ is an eigenvalue of the matrix f ðAÞ.
Lemma 2 [28]. If X and Y are n� n symmetric matrices such that X P 0 and xT Yx > 0 for all nonzero x 2 Rn satisfying xT Xx ¼ 0,
then there exists a constant r > 0 such that the matrix Y þ rX is positive definite.

Lemma 3 (The Schur complement lemma, see [29]). For a given matrix S ¼ S11 S12

ST
12 S22

� �
with ST

11 ¼ S11 and ST
22 ¼ S22, then the

following conditions are equivalent:

(1) S < 0,
(2) S11 < 0, S22 � ST

12S�1
11 S12 < 0,

(3) S22 < 0, S11 � S12S�1
22 ST

12 < 0.

3. Full-order observer design

This section investigates the full-order observer design for one-sided Lipschitz nonlinear systems by using a Riccati equa-
tion approach. A Riccati-type sufficient condition is proposed to guarantee the asymptotical stability of the observer error
dynamics. We also show that the obtained conditions are less conservative than some existing ones in recent literature.

Theorem 1. Suppose that system (1) satisfies the conditions (3) and (4) with constants q, d and u, and the observer holds the form
of (5). Then the observer error dynamics is asymptotically stable if there exist scalars e1 > 0, e2 > 0 and r > 0 such that the
following Riccati inequality has a symmetric positive definite solution P:
AT P þ PAþ ðe1qþ e2dÞI þ
1
e2

P þue2 � e1

2
I

� �2
� rCT C < 0: ð10Þ
The observer gain can then be chosen as
L ¼ r
2

P�1CT : ð11Þ
Proof. For the error dynamics (6), consider the Lyapunov function VðtÞ ¼ eTðtÞPeðtÞ. Then
_VðtÞ ¼ eTðtÞ ðA� LCÞT P þ PðA� LCÞ
h i

eðtÞ þ 2eTðtÞPðU� ÛÞ ¼
eðtÞ

~U

" #T
ðA� LCÞT P þ PðA� LCÞ P

P 0

" #
eðtÞ

~U

" #
; ð12Þ
where ~U ¼ U� Û.
From (3), we get qeTðtÞeðtÞ � eTðtÞ~U P 0. Therefore, for any positive scalar e1,
e1
eðtÞ

~U

" #T
qI � I

2

� 0

� �
eðtÞ

~U

" #
P 0: ð13Þ
Similarly, from (7), we have
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e2
eðtÞ

~U

" #T
dI uI

2

� �I

" #
eðtÞ

~U

" #
P 0; ð14Þ
where e2 is a positive scalar. Then, adding the terms on the left-hand sides of (13) and (14) to the right-hand side of (12)
yields
_VðtÞ 6
eðtÞ

~U

" #T
ðA� LCÞT P þ PðA� LCÞ þ ðe1qþ e2dÞI P þ ue2�e1

2 I

� �e2I

" #
eðtÞ

~U

" #
: ð15Þ
Let L ¼ r
2 P�1CT . Then, (10) can be rewritten as
ðA� LCÞT P þ PðA� LCÞ þ ðe1qþ e2dÞI þ
1
e2

P þue2 � e1

2
I

� �2
< 0: ð16Þ
Using the Schur complement lemma, i.e., Lemma 3, the condition (16) is equivalent to
ðA� LCÞT P þ PðA� LCÞ þ ðe1qþ e2dÞI P þ ue2�e1
2 I

� �e2I

" #
< 0: ð17Þ
Thus, it follows from (15) that _VðtÞ < 0 for all eðtÞ– 0, which implies that the observer error dynamics is asymptotically sta-
ble. This completes the proof. h
Remark 1. Theorem 1 presents a Riccati-type sufficient condition to design observers for one-sided Lipschitz nonlinear sys-
tems. Note that (10) can be modified as follows:
AT P þ PAþ ðe1qþ e2dÞI þ
1
e2

P þue2 � e1

2
I

� �2
� rCT C ¼ �lI < 0; ð18Þ
where l > 0, l is a small scalar. For given e1, e2, r, and l, the following Riccati equality
AT P þ PAþ ðe1qþ e2dÞI þ
1
e2

P þue2 � e1

2
I

� �2
� rCT C ¼ �lI: ð19Þ
can be easily solved via using MATLAB. Thus, one can find the solution of the Riccati inequality (10). On the other hand, by
using Lemma 3, (10) is equivalent to P > 0 and
AT P þ PAþ ðe1qþ e2dÞI � rCT C P þ ue2�e1
2 I

� �e2I

" #
< 0; ð20Þ
which can be solved using the MATLAB LMI toolbox. Therefore, the condition (10) is easily tractable via standard numerical
software.
Remark 2. The relationship between Proposition 1 and Theorem 1 can be established by the following Theorem 2, which
indicates that the latter is less conservative than the former.
Theorem 2. Assume that there exist a matrix L and positive scalars a > 0 and 0 < k < 1 such that the inequalities (8) and (9) hold.
Let P ¼ I, e1 ¼ uþ2a

a and e2 ¼ 1
a. Then there exists a constant r > 0 together with the matrix P and the scalars e1 and e2 satisfy the

inequality (10).
Proof. Assume that L, a > 0, and 0 < k < 1 satisfy (8) and (9). By using Lemma 3, (8) is then equivalent to
k� n
2a

I � 2a
k� n

ðA� LCÞTðA� LCÞ > 0; ð21Þ
i.e.,
ðA� LCÞTðA� LCÞ 6 k� nð Þ2

4a2 I; ð22Þ
where n ¼ ðdþ 1Þ þ qðuþ 2aÞ. From (22), we have
rmaxðA� LCÞ 6 k� n
2a

: ð23Þ
Then, by using Fan’s theorem [27], we get
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kmax A� LC þ ðA� LCÞT
h i

6 2rmaxðA� LCÞ 6 k� n
a

: ð24Þ
Denote
P ¼ ðA� LCÞT P þ PðA� LCÞ þ ðe1qþ e2dÞI þ
1
e2

P þue2 � e1

2
I

� �2
: ð25Þ
Let P ¼ I, e1 ¼ uþ2a
a and e2 ¼ 1

a. Then, it follows from (24) and (16) that
P ¼ A� LC þ ðA� LCÞT þ q uþ 2að Þ þ d
a

I 6 kmax A� LC þ ðA� LCÞT
h i

I þ q uþ 2að Þ þ d
a

I

6
k� n

a
I þ q uþ 2að Þ þ d

a
I ¼ k� 1

a
I: ð26Þ
Note that a > 0 and 0 < k < 1. Thus, we have P < 0, which can be rewritten as
AT P þ PAþ ðe1qþ e2dÞI þ
1
e2

P þue2 � e1

2
I

� �2
� CT LT P � PLC < 0: ð27Þ
Inequality (27) implies for all nonzero x 2 Rn such that xT CT Cx ¼ 0, i.e., Cx ¼ 0, we must have
xT AT P þ PAþ ðe1qþ e2dÞI þ
1
e2

P þue2 � e1

2
I

� �2
� �

x < 0: ð28Þ
Therefore, it follows from Lemma 2 that there exists a constant r > 0 such that (10) is satisfied, which completes the proof of
Theorem 3. h
Remark 3. Note that Proposition 1 and Theorem 1 are derived via different techniques. Now Theorem 2 shows that if there
exists a solution for (8) and (9) in Proposition 1, then there exists a solution for (10) in Theorem 1 as well. On the other hand,
one can give some examples to show that it is possible that the conditions (8) and (9) in Proposition 1 have no solution, but
(10) is still feasible (see, e.g., the example in Section 5). This observation, together with Theorem 2, implies that the sufficient
conditions in our paper are less conservative than those in [17].
4. Reduced-order observer design

A reduced-order observer estimates only partial states that are independent of the output of system. Hence, it has a lower
dimension than that of the full-order observer. This implies that reduced-order observer can be constructed with fewer inte-
grators and the whole control system will be simpler. This section presents a reduced-order observer for the one-sided Lips-
chitz nonlinear systems. It is shown that the conditions under which a full-order observer exists also guarantee the existence
of a reduced-order observer.

In this section, we decompose A and P into block matrices as follows
A ¼
A11 A12

A21 A22

� �
; P ¼

P1 P2

PT
2 P3

� �
; ð29Þ
where A11; P1 2 Rp�p and A22; P3 2 Rðn�pÞ�ðn�pÞ. For simplicity, we let C ¼ ½Ip 0�. The reduced-order observer of system (1) can
be designed as follows:
_̂z2 ¼ ðA22 þ KA12Þẑ2 þ ½KðA11 � A12KÞ þ A21 � A22K�yþ ðK In�p ÞU
y

ẑ2 � Ky

� �
;u

� �
ẑ1 ¼ x̂1 ¼ y

x̂2 ¼ ẑ2 � Ky

8>>><
>>>:

ð30Þ
where K ¼ P�1
3 PT

2 2 Rðn�pÞ�p.

Theorem 3. Let C ¼ ½Ip 0�. Assume that system (1) satisfies the conditions (3) and (4) with constants q, d and u. If there exist
P > 0 and scalars e1 > 0, e2 > 0 and r > 0 such that the inequality (10) is satisfied, then (30) is a reduced-order observer for
system (1).
Proof. Let P be a positive definite solution of (10). Let X ¼ ðA22 þ KA12ÞT P3 þ P3ðA22 þ KA12Þ, where K ¼ P�1
3 PT

2 2 Rðn�pÞ�p. Then,
from (10), we have
Xþ e1qþ e2dð ÞIn�p þ
PT

2P2

e2
þ 1

e2
P3 þ

ue2 � e1

2
In�p

� �2
< 0: ð31Þ
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Take a coordinate transformation of z ¼ Tx, where T ¼ Ip 0
K In�p

� �
. Let z ¼ z1

z2

� �
, where z1 ¼ y 2 Rp and z2 2 Rn�p. Then, from

(1), z2 satisfies the following equation:
_z2 ¼ ðA22 þ KA12Þz2 þ ½KðA11 � A12KÞ þ A21 � A22K�yþ ðK In�p ÞU
y

z2 � Ky

� �
;u

� �
ð32Þ
Subtracting the first equation of (30) from (32), the error ~z2 ¼ z2 � ẑ2 is then governed by
_~z2 ¼ ðA22 þ KA12Þ~z2 þ ðK In�p ÞDU; ð33Þ
where
DU ¼ U
y

z2 � Ky

� �
;u

� �
�U

y

ẑ2 � Ky

� �
;u

� �
: ð34Þ
Consider the Lyapunov function candidate
V2ðtÞ ¼ ~zT
2P3~z2: ð35Þ
Then its time derivative along the trajectories of (33) is
_V2ðtÞ ¼ ~zT
2 ðA22 þ KA12ÞT P3 þ P3ðA22 þ KA12Þ
h i

~z2 þ 2~zT
2P3ðK In�p ÞDU ¼ ~zT

2 ðA22 þ KA12ÞT P3 þ P3ðA22 þ KA12Þ
h i

~z2 þ 2~zT
2ð PT

2 P3 Þ
DU1

DU2

� �

¼
~z2

DU1

DU2

2
64

3
75

T ðA22 þ KA12ÞT P3 þ P3ðA22 þ KA12Þ PT
2 P3

P2 0 0
P3 0 0

2
64

3
75

~z2

DU1

DU2

2
64

3
75: ð36Þ
where DU1 2 Rp, DU2 2 Rn�p. Using the one-sided Lipschitz condition (3), we have
DU;
0
~z2

� �	 

6 q

0
~z2

� �����
����

2

; ð37Þ
The above inequality implies that DUT
2~z2 6 q~zT

2~z2. Therefore, for any positive scalar e1, we have
e1

~z2

DU1

DU2

2
64

3
75

T
qIn�p 0 � In�p

2

� 0 0
� � 0

2
64

3
75

~z2

DU1

DU2

2
64

3
75P 0: ð38Þ
On the other hand, from the condition (4) of quadratic inner-boundedness, we get
DUTDU 6 d
0
~z2

� �����
����

2

þu
0
~z2

� �
;DU

	 

; ð39Þ
which implies that
DUT
1DU1 þ DUT

2DU2 6 d~zT
2~z2 þu~zT

2DU2; ð40Þ
Thus, for any positive scalar e2, we have
e2

~z2

DU1

DU2

2
64

3
75

T
dIn�p 0 uIn�p

2

� �Ip 0
� � �In�p

2
64

3
75

~z2

DU1

DU2

2
64

3
75P 0: ð41Þ
Then, adding the left terms of (38) and (41) to the right-hand side of (36) yields
_V2ðtÞ 6
~z2

DU1

DU2

2
64

3
75

T

N

~z2

DU1

DU2

2
64

3
75; ð42Þ
where
N ¼
ðA22 þ KA12ÞT P3 þ P3ðA22 þ KA12Þ þ e1qþ e2dð ÞIn�p PT

2 P3 þ ue2�e1
2 In�p

P2 �e2Ip 0
P3 þ ue2�e1

2 In�p 0 �e2In�p

2
64

3
75: ð43Þ
Using Lemma 3, the condition (31) is equivalent to N < 0. Thus, it follows from (42) that _V2ðtÞ < 0 for all ~z2 – 0. Therefore,
according to the standard Lyapunov stability theory, the error dynamics (33) is asymptotically stable. This completes the
proof. h
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Remark 4. It should be pointed out that in Theorem 3 the assumption of C being of the form of ½Ip 0� does not lose the gen-
erality. In fact, if C is full rank, then there exists a coordinate transformation T such that CT�1 ¼ ½Ip 0�.
5. Simulation study

In this section, we illustrate the proposed design through a numerical example. For convenience, we borrow the example
illustrated in [17]. Consider a dynamical nonlinear system described by (1) with
x ¼
x1

x2

� �
; A ¼

1 1
�1 1

� �
; UðxÞ ¼

�x1ðx2
1 þ x2

2Þ
�x2ðx2

1 þ x2
2Þ

" #
; C ¼ 1 0½ �: ð44Þ
The above equation can be used to describe the motion of a moving object. Note that y ¼ x1, i.e., only the state x1 is available.
So our goal is to design an observer to estimate x2. We first consider the full-order observer. From [17], we know that UðxÞ is
globally one-sided Lipschitz with q ¼ 0. The system is locally Lipschitz and on any set D ¼ x 2 R2 : xk k 6 r

� 
, the Lipschitz

constant l is 3r2. Consider the set ~D ¼ x 2 R2 : xk k 6 r
� 

. Let
r ¼min
ffiffiffiffiffiffiffiffiffi
�u

4

r
;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dþu2

4
4

r !
; u < 0; dþu2

4
> 0:
Then one can verify the quadratically inner-bounded property of UðxÞ in ~D [17]. As the system is globally one-sided Lipschitz,
i.e., D ¼ R2, D \ ~D ¼ ~D. Note that the region ~D can be made arbitrarily large by choosing appropriate values for c and b.

Now let us consider the solvability of the conditions (8) and (9) of Proposition 1. Denote h ¼ k�n
2a . Let L ¼ ½l1 l2�T . Then (8)

can be rewritten as
h 0 1� l1 �1� l2

0 h 1 1
1� l1 1 h 0
�1� l2 1 0 h

2
6664

3
7775 > 0: ð45Þ
It follows from (45) that
h 1
1 h

� �
> 0:
Hence, h > 1, i.e., k� n > 2a. Note that n ¼ dþ 1, uþ 2a > 0 and 0 < k < 1. We then have d < k� 2a� 1 < �2a < u. Given
u ¼ �100, by applying Proposition 1, one has to assume d < �100. However, we need not to assume d < �100 while apply-
ing the condition (10) in Theorem 1. In fact, if take d ¼ �99, u ¼ �100 and solve the LMI (20), we get
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Fig. 1. The simulation for state x1 by the full-order observer (5).
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Fig. 2. The simulation for state x2 by the full-order observer (5).
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P ¼
1236:2 �23:1
�23:1 1218:5

� �
; r ¼ 557:1775:
Hence
L ¼ r
2

P�1CT ¼
0:2254
0:0043

� �
:

Then we can use (5) to design a full-order observer to estimate the state. For simulation, we set initial conditions as follows:
xð0Þ ¼ ð2 1:2ÞT , x̂ð0Þ ¼ ð0:5 � 1:5ÞT . Figs. 1 and 2 show the trajectories of x1ðtÞ and x2ðtÞ and their estimates, respectively. The
trajectories of error dynamics are displayed in Fig. 3. The simulation results verify the effectiveness of the proposed design.

The reduced-order observer can also be designed by using Theorem 3. According to (30), the reduced-order observer is
given by
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Fig. 3. The simulation for the error dynamics of the full-order observer (5).
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Fig. 4. The simulation for state x2 by the reduce-order observer (46).
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_̂z2 ¼ 0:981ẑ2 � 1:0004y� ẑ2 y2 þ ðẑ2 þ 0:019yÞ2
h i

x̂1 ¼ y

x̂2 ¼ ẑ2 þ 0:019y

8>><
>>: ð46Þ
The simulation for state x2 by the reduce-order observer (46) is presented in Fig. 4, where the initial conditions are
xð0Þ ¼ ð�1:5 1ÞT and x̂2ð0Þ ¼ �3. From the figure, we know that the effect of state trajectory tracking is satisfactory.

6. Conclusions

We have addressed the design problems of full-order as well as reduced-order state observers for one-sided Lipschitz
nonlinear systems by using a novel Riccati equation method. A Riccati-type condition is presented to ensure the existence
of a full-order observer. The same condition also guarantees the existence of a reduce-order observer. It has been shown that
the obtained conditions are less conservative than some existing ones in recent literature. A simulative example is included
to illustrate the effectiveness of the proposed observers.

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China under Grant Nos. 61104140,
71125001 and 90924301, the Fundamental Research Funds for the Central Universities (HUST: Grant No. 2011JC055), the
Research Fund for the Doctoral Program of Higher Education (RFDP) under Grant No. 20100142120023, the Natural Science
Foundation of Hubei Province of China under Grant No. 2011CDB042, the Found of SUES under Grants 2011-11 and
XKCZ1213, the Innovation Program of Shanghai Municipal Education Commission under Grant 12YZ156, and the Excellent
Young Teachers Program of Shanghai Higher Education under Grant shgcjs001.

References

[1] Krener A, Respondek W. Nonlinear obervers with linearizable error dynamics. SIAM J Control Optim 1985;23(2):197–216.
[2] Arcak M, Kokotovic P. Observer-based control of systems with slope-restricted nonlinearities. IEEE Trans Automat Control 2001;46(7):1146–51.
[3] Arcak M, Kokotovic P. Nonlinear observers: A circle criterion design and roubstness analsysis. Automatica 2001;37(12):1923–30.
[4] Starkov KE, Coria LN, Aguilar LT. On synchronization of chaotic systems based on the Thau observer design. Commun Nonlinear Sci Numer Simulat

2012;17(1):17–25.
[5] Ibrir S. Circle-criterion approach to discrete-time nonlinear observer design. Automatica 2007;43(8):1432–41.
[6] Wang H, Zhu XJ, Gao SW, Chen ZY. Singular observer approach for chaotic synchronization and private communication. Commun Nonlinear Sci Numer

Simulat 2011;16(3):1517–23.
[7] Liu Y. Robust adaptive observer for nonlinear sytems with unmodelled dynamcis. Automatica 2009;45(8):1891–5.
[8] Huang J, Han Z, Cai X, Liu L. Adaptive full-order and reduced-order observers for the Lur’e differential inclusion system. Commun Nonlinear Sci Numer

Simulat 2011;16(7):2869–79.
[9] Xia X, Gao W. Nonlinear observers design by observer error linearization. SIAM J Control Optim 1989;27(1):199–216.

[10] Thau F. Observing the state of nonlinear dynamic systems. Int J Control 1973;17(3):471–9.
[11] Rajamani R. Observers for Lipschitz nonlinear systems. IEEE Trans Automat Control 1998;43(3):397–401.



W. Zhang et al. / Commun Nonlinear Sci Numer Simulat 17 (2012) 4968–4977 4977
[12] Zhu F, Han Z. A note on observers for Lipschitz nonlinear systems. IEEE Trans Automat Control 2002;47(10):1751–4.
[13] Chen M, Chen C. Robust nonlinear observer for Lipschitz nonlinear systems subject to disturbances. IEEE Trans Automat Control 2007;52(12):2365–9.
[14] Zemouche A, Boutayeb M. Observer design for Lipschitz nonlinear systems: the discrete-time case. IEEE Trans Cricuits Syst II: Express Briefs

2006;53(8):777–81.
[15] Zhang W, Su H, Zhu F, Yue D. A note on observers for discrete-time Lipschitz nonlinear systems. IEEE Trans Cricuits Syst II: Express Briefs

2012;59(2):123–7.
[16] Lu GP, Ho WC Daniel. Full-order and reduced-order observers for Lipschitz descriptor systems: the unified LMI approach. IEEE Trans Cricuits Syst II:

Express Briefs 2006;53(7):563–7.
[17] Abbaszadeh M, Marquez HJ. Nonlinear observer design for one-sided Lipschitz systems. Proc Am Control Conf 2010:5284–9.
[18] Phanomchoeng G, Rajamani R. Observer design for Lipschitz nonlinear systems using Riccati equations. Proc Am Control Conf 2010:6060–5.
[19] Hairer E, Norsett SP, Wanner G. Solving ordinary differential equations II: stiff and DAE problems. Springer-Verlag; 1993.
[20] Stuart M, Humphries AR. Dynamical systems and numerical analysis. Cambridge University Press; 1998.
[21] Dekker K, Verwer JG. Stability of Runge-Kutta methods for stiff nonlinear differetial equations. North-Holland; 1984.
[22] Donchev T, Rios V, Wolenski P. Strong invariance and one-sided Lipschitz multifunctions. Nonlinear Anal: Theor Methods Appl 2005;60(5):849–62.
[23] Hu G. Observers for one-sided lipschitz non-linear systems. IMA J Math Control Info 2006;23(4):395–401.
[24] Xu M, Hu G, Zhao Y. Reduced-order observer design for one-sided Lipschitz nonlinear systems. IMA J Math Control Info 2009;26(3):299–317.
[25] Hu G. A note on observer for one-sided Lipschitz non-linear systems. IMA J Math Control Info 2008;25(3):297–303.
[26] Zhao Y, Tao J, Shi NZ. A note on observer design for one-sided Lipschitz nonlinear systems. Syst Control Lett 2010;59(1):66–71.
[27] Horn RA, Johnson CR. Matrix analysis. Cambridge University Press; 1985.
[28] Peterson IH, Hollot CV. A Riccati equation approach to the stabilization of uncertain linear sytems. Automatica 1986;22(4):397–411.
[29] Boyd S, Ghaoui LE, Feron E, Balakrishnan V. Linear matrix inequalities in system and control theory. Philadelphia: SIAM; 1994.


	Full-order and reduced-order observers for one-sided Lipschitz nonlinear systems using Riccati equations
	1 Introduction
	2 Preliminaries
	3 Full-order observer design
	4 Reduced-order observer design
	5 Simulation study
	6 Conclusions
	Acknowledgements
	References


