
Chapter 4

State feedback and Observer Feedback

4.1 Pole placement via state feedback

ẋ = Ax+Bu, x ∈ <n, u ∈ <
y = Cx+Du

• Poles of transfer function are eigenvalues of A

• Pole locations affect system response

– stability

– convergence rate

– command following

– disturbance rejection

– noise immunity ....

• Assume x(t) is available

• Design u = −Kx+ v to affect closed loop eigenvalue:

ẋ = Ax+B(−Kx+ v) = (A−BK)︸ ︷︷ ︸
Ac

x+Bv

such that eigenvalues of Ac are σ1, . . . , σn.

• K = state feedback gain; v = auxiliary input.

4.2 Controller Canonical Form (SISO)

A system is said to be in controller (canonical) form if:

d

dt

z1z2
z3

 =

 0 1 0
0 0 1
−a0 −a1 −a2


︸ ︷︷ ︸

A

z1z2
z3

+

0
0
1

u
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What is the relationship between ai, i = 0, . . . , n− 1 and eigenvalues of A?

• Consider the characteristic equation of A:

ψ(s) = det(sI −A) = det

 s −1 0
0 s −1
a0 a1 a2


• Eigenvalues of A, λ1, . . . , λn are roots of ψ(s) = 0.

ψ(s) = sn + an−1s
n−1 + . . .+ a1s+ a0

• Therefore, if we can arbitrarily choose a0, . . . , an−1, we can choose the eigenvalues
of A.

Target characteristic polynomial

• Let desired eigenvalues be σ1, σ2, . . . σn.

• Desired characteristic polynomial:

ψ̄(s) = Πn
i=1(s− σi) = sn + ān−1s

n−1 + . . .+ ā1s+ ā0

Some properties of characteristic polynomial for its proper design:

• If σi are in conjugate pair (i.e. for complex poles, α ± jβ), then ā0, ā1, . . . , ān−1 are real
numbers; and vice versa.

• Sum of eigenvalues: ān−1 = −
∑n

i=1 σi

• Product of eigenvalues: ā0 = (−1)nΠn
i=1σi

• If σ1, . . . , σn all have negative real parts, then āi > 0 i = 0, . . . n− 1.

• If any of the polynomial coefficients is non-positive (negative or zero), then one or more of
the roots have nonnegative real parts.
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Consider state feedback:

u = −Kx+ v

K = [k0, k1, k2]

Closed loop equation:

ẋ = Ax+B(−Kx+ v) = (A−BK)︸ ︷︷ ︸
Ac

x+Bv

with

Ac =

 0 1 0
0 0 1

−(a0 + k0) −(a1 + k1) −(a2 + k2)


Thus, to place poles at σ1, . . . , σn, choose

ā0 = a0 + k0 ⇒ k0 = ā0 − a0
ā1 = a1 + k1 ⇒ k1 = ā1 − a1

...

ān−1 = an−1 + kn−1 ⇒ kn−1 = ān−1 − an−1

4.3 Conversion to controller canonical form

ẋ = Ax+Bu

• If we can convert a system into controller canonical form via invertible transformation T ∈
<n×n:

z = T−1x; Az = T−1AT, Bz =


0
...
0
1

 = T−1B

where ż = Azz +Bzu is in controller canonical form:

Az =


0 1 0 . . .
0 0 1 . . .
0 . . . 0 1
−a0 . . . −an−2 −an−1

 Bz =


0
...
0
1


we can design state feedback

u = −Kzz + v

to place the poles (for the transformed system).

• Since A and Az = T−1AT have same characteristic polynomials:

det(λI − T−1AT ) = det(λT−1T − T−1AT )

= det(T )det(T−1)det(λI −A)

= det(λI −A)
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The control law:

u = −KzT
−1x+ v = −Kx+ v

where K = KzT
−1 places the poles at the desired locations.

Theorem For the single input LTI system, ẋ = Ax+Bu, there is an invertible transformation
T that converts the system into controller canonical form if and only if the system is controllable.

Proof:

• “Only if”: If the system is not controllable, then using Kalman decomposition, there are modes
that are not affected by control. Thus, eigenvalues associated with those modes cannot be
changed. This means that we cannot transform the system into controller canonical form,
since otherwise, we can arbitrarily place the eigenvalues.

• “If”: Let us construct T . Take n = 3 as example, and let T be:

T = [v1 | v2 | v3]

A = T

 0 1 0
0 0 1
−a0 −a1 −a2

T−1; B = T

0
0
1


This says that v3 = B.

Note that Az is determined completely by the characteristic equation of A.

AT = T

 0 1 0
0 0 1
−a0 −a1 −a2

 (4.1)

Now consider each column of (4.1) at a time, starting from the last. This says that:

A · v3 = v2 − a2v3,⇒ v2 = Av3 + a2v3 = AB + a2B

Having found v2, we can find v1 from the 2nd column from (4.1). This says,

A · v2 = v1 − a1v3,
⇒ v1 = Av2 + a1v3 = A2B + a2AB + a1B

• Now we check if the first column in (4.1) is consistent with the v1, v2 and v3 we had found.
It says:

A · v1 + a0v3 = 0.

Is this true? The LHS is:

A · v1 + aov3 =A3B + a2A
2B + a1AB + a0B

=(A3 + a2A
2 + a1A+ a0I)B

Since ψ(s) = s3+a2s
2+a1s+a0 is the characteristic polynomial of A, by the Cayley Hamilton

Theorem, ψ(A) = 0, so A3 + a2A
2 + a1A+ a0I = 0. Hence, A · v1 + a0v3 = 0.
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• To complete the proof, we need to show that if the system is controllable, then T is non-
singular. Notice that

T =
(
v1 v2 v3

)
=
(
B AB A2B

)a1 a2 1
a2 1 0
1 0 0


so that T is non-singular if and only if the controllability matrix is non-singular. �

Summary procedure for pole placement:

• Find characteristic equation of A,

ψA(s) = det(sI −A)

• Define the target closed loop characteristic equation ψAc(s) = Πn
i=1(s− σi), where σi are the

desired pole locations.

• Compute vn, vn−1 etc. successively to contruct T ,

vn = b

vn−1 = Avn + an−1b

...

vk = Avk+1 + akb

• Find state feedback for transformed system: z = T−1x:

u = Kzz + v

• Transform the feedback gain back into original coordinates:

u = Kx+ v; K = KzT
−1.

Example:

ẋ =

−1 2 −2
1 −2 4
−5 −1 3

x+

1
0
0

u x(0) =

 5
2
−1


y =

(
1 0 0

)
x

The open loop system is unstable, as A has eigenvalues −4.4641, 2.4641 and 2. The system response
to a unit step input is shown in Fig. 4.1.

• Characteristic equation of A
ψA(s) = s3 − 15s+ 22 = 0

• Desired closed loop pole locations : (−2,−3,−4). Closed loop characteristic equation

ψAc(s) = (s+ 2)(s+ 3)(s+ 4) = s3 + 9s2 + 26s+ 24
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Figure 4.1: Open loop response of system to step input

• T =
(
v1 v2 v3

)
. Using the procedure detailed above,

v3 = B =

1
0
0

 v2 =

−1
1
−5

 v1 =

 −2
−23
−11


T =

 −2 −1 1
−23 1 0
−11 −5 0


• Comparing the coefficients of ψA and ψAc , we obtain the gain vector Kz in transformed

coordinates
Kz =

(
2 41 9

)
• Transform Kz into original system.

K = KzT
−1 =

(
9.0000 3.5714 −9.2857

)
• Feedback control

u = −Kx+ v

where v is an exogenous input. In our example, v = 1 is the reference input, and the feedback
law is implemented as:

u = −Kx+ gv

where g is a gain to be selected for reference tracking. Here it is selected as −11.98 to
compensate for the DC gain. As seen from Fig. 4.2, the output y reaches the target value of
1.
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Figure 4.2: Closed loop response of system to step input

Arbitrarily pole placement???
Consider system

ẋ = −x+ u

y = x

Let’s place pole at s = −100 and match the D.C. gain.
Consider u = −Kx+ 100v. The using K = 99,

ẋ = −(1 +K)x+ 100v = −100(x− v).

This gives a transfer function of

X(s) =
100

s+ 100
V (s).

If v(t) is a step input, and x(0) = 0, then u(0) = 100 which is very large. Most likely saturates the
system.

Thus, due to physical limitations, it is not practically possible to achieve arbitrarily fast eigen
values.

4.4 Pole placement - multi-input case

ẋ = Ax+Bu

with B ∈ <n×m, m > 1.
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Figure 4.3: Hautus-Keymann Lemma

• The choice of eigenvalues do not uniquely specify the feedback gain K.

• Many choices of K lead to same eigenvalues but different eigenvectors.

• Possible to assign eigenvectors in addition to eigenvalues.

Hautus Keymann Lemma
Let (A,B) be controllable. Given any b ∈ Range(B), there exists F ∈ <m×n such that (A −

BF, b) is controllable.
Suppose that b = B · g, where g ∈ <m.

• Inner loop control:
u = −Fx+ gv ⇒ ẋ = (A−BF )x+ bv

• Outer loop SI control:
v = −kx+ v1

where k is designed for pole-placement (using technique previously given). See Fig. 4.3.

We can write

ẋ = Ax+Bu

= Ax+B(−Fx+ gv)

= (A−BF )x+ bv

= A1x+ b(−kx+ v1)

= (A1 − bk)x+ bv1

= ACLx+ bv1

Design k so that closed loop poles, ie, eigen values of ACL are placed at desired locations.

• It is interesting to note that generally, it may not be possible to find a b ∈ <n ∈ Range(B)
such that (A, b) is controllable. For example: for

A =

2 1 0
0 2 0
0 0 2

; B =

1 3
1 0
0 1


we cannot find a g ∈ <m such that (A,Bg) is controllable. We can see this by applying the
PBH test with λ = 2. The reason for this is that A has repeated eigenvalues at λ = 2 with
more than one independent eigenvector. The same situation applies, if A is semi-simple, with
repeated eigenvalues.
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Figure 4.4: Nominal system, and open loop control

• What the Hautus Keymann Theorem says is that it is possible after preliminary state feedback
using a matrix F . In fact, generally, most F matrices will make Ā = A − BF has distinct
eigenvalues. This makes it possible to avoid the parasitic situation mentioned above, so that
one can find g ∈ <m so that (Ā, Bg) is controllable.

Generally, eigenvalue assignment for a multiple input system is not unique. There will be
some possibilities of choosing the eigenvectors also. However, for the purpose of this class, we shall
use the optimal control technique to resolve the issue of choosing appropriate feedback gain K in
u = −Kx + v. The idea is that K will be picked based on some performance criteria, not to just
to be placed exactly at some a-priori determined locations.

Remark: LQ method can be used for approximates pole assignment (see later chapter).

Example:

A =

−1 1 0
1 −3 1
0 1 −1

 B =

0 0
1 1
0 1



We see from Fig. 4.4 that the nominal system is unstable, and also the system is uncontrollable
by open loop step inputs. Let B = [b1 b2], then we see that (A, b1) is not controllable. We choose
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Figure 4.5: Closed loop system after two-loop state feedback

F such that (A−BF, b1) is controllable.

F =

(
1 0 1
0 1 1

)
g =

(
1
0

)

b1 =

0
1
0

 = Bg

For the inner loop,
u = −Fx+ gv

and for the outer loop,
v = −Kx+ g1v1

where g1 is a parameter to be selected to account for the DC gain. The target closed loop pole
locations are

(
−3 −2 −1

)
. As usual, A1 is transformed into controllable canonical form, the T

matrix is computed, and the gain vector Kz is computed as

Kz =
(
7 16 9

)
which is transformed into original system coordinates

K = KzT
−1 =

(
0 9 −2

)
The regulation problem is shown here. Hence, v1 = 0. See Fig. 4.5.
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4.5 State feedback for time varying system

The pole placement technique is appropriate only for linear time invariant systems. How about
linear time varying systems, such as obtained by linearizing a nonlinear system about a trajectory?

• Use least norm control

• Make use of uniform controllability

Consider the modified controllability (to zero) grammian function:

Hα(t0, t1) :=

∫ t1

t0

Φ(t0, τ)B(τ)BT (τ)ΦT (t0, τ)e−4α(τ−t0)dτ.

Note that for α = 0, Hα(t0, t1) = Wc,[t0,t1], the controllability (to zero) grammian.
Theorem If A(·) and B(·) are piecewise continuous and if there exists T > 0, hM ≥ hm > 0

s.t. for all t ≥ 0,
0 < hmI ≤ H0(t, t+ T ) ≤ hMI

then for any α > 0, the linear state feedback,

u(t) = −F (t)x(t) = −BT (t)Hα(t, t+ T )−1x(t)

will result in a closed loop system:

ẋ = (A(t)−B(t)F (t))x(t)

such that for all x(t0), and all t0,
‖x(t)eαt‖ → 0

Example: Consider a subsystem having vibrational modes, which need to be damped out,

ẋ = A(t)x+B(t)u

y = Cx

A(t) =

(
0 −ω(t)
ω(t) 0

)
B =

(
0

2 + 0.5 sin(0.5t)

)
C =

(
1 0

)
where ω(t) = 2− cos(t), and state transition matrix

Φ(t, 0) =

(
cos(θ(t)) sin(θ(t))
− sin(θ(t)) cos(θ(t))

)
where θ(t) =

∫ t
0 ω(t)dt.

Hα(t, t+ 4π) =

∫ t+4π

t
Φ(t, τ)B(τ)BT (τ)ΦT (t, τ)e−4α(τ−t0)dτ

where T = 4π has been chosen so that it is a multiple of the fundamental period of the sinusoidal
component of B(t).
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Figure 4.6: Nominal system state (left) and output (right)
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Figure 4.7: Nominal system state (left) and output (right) with open loop control
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Figure 4.8: Closed loop system state (left) and output (right) for α = 0.2
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Figure 4.9: Closed loop system state (left) and output (right) for α = 1.8
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Figure 4.10: Control input for α = 0.2 (left) and α = 1.8 (right)
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Figure 4.12: ||x(t)eαt|| for α = 0.2 (left) and α = 1.8 (right)

Use MATLAB’s quad to compute the time-varying Hα(t, t+4π). Here, the simulation is carried
out for α = 0.2, 1.8. Fig. 4.6 shows the unforced system, while Fig. 4.7 shows the nominal system
subject to unit step input. Figures 4.8 - 4.10 show the response of the closed loop state feedback
system. It is clear that the nominal system is unstable by itself, and the state feedback stabilizes
the closed loop system.
Remarks:

• Hα can be computed beforehand.

• Can be applied to periodic systems, e.g. swimming machine.

• α is used to choose the decay rate.

• The controllability to 0 map on the interval (t0, t1) Lc,[t0,t1] is:

u(·) 7→ Lc,[t0,t1][u(·)] := −
∫ t1

t0

Φ(t0, τ)B(τ)u(τ)dτ

The least norm solution that steers a state x(t0) to x(t1) = 0 with respect to the cost function:

J[t0,t1] =

∫ t1

t0

uT (τ)u(τ)exp(4α(τ − t0))dτ

is:
u(τ) = −e−4α(τ−t0)BT (τ)Φ(t0, τ)THα(t0, t1)

−1x(t0).

and when evaluated at τ = t0,

u(t0) = −BT (t0)Hα(t0, t1)
−1x(t0).

Thus, the proposed control law is the least norm control evaluated at τ = t0. By relating
this to a moving horizon [t0, t1] = [t, t + T ], where t continuously increases, the proposed
control law is the moving horizon version of the least norm control. This avoids the difficulty
of receding horizon control where the control gain can become infinite when t→ tf .

• Proof is based on a Lyapunov analysis typical of nonlinear control, and can be found in
[Desoer and Callier, 1990, p. 231]
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4.6 Observer Design

ẋ = Ax+Bu

y = Cx

The observer problem is that given y(t) and u(t) can we determine the state x(t)?

Openloop observer

Suppose that A has eigenvalues on the LHP (stable). Then an open loop obsever is a simulation:

˙̂x = Ax̂+Bu

The observer error dynamics for e = x− x̂ are:

ė = Ae

Since A is stable, e→ 0 exponentially.

The problem with open loop observer is that they do not make use of the output y(t), and also
it will not work in the presence of disturbances or if A is unstable.

4.7 Closed loop observer by output injection

Luenberger Observer
˙̂x = Ax̂+Bu+ L(y − Cx̂)

This looks like the open loop observer except for the last term. Notice that Cx̂ − y is the output
prediction error, also known as the innovation. L is the observer gain.

Let us analyse the error dynamics e = x − x̂. Subtracting the observer dynamics by the plant
dynamics, and using the fact that y = Cx,

ė = Ae+ LC(x− x̂) = (A− LC)e.

If A− LC is stable (has all its eigenvalues in the LHP), then e→ 0 exponentially.

Design of observer gain L:

We use eigenvalue assignment technique to choose L. i.e. choose L so that the eigenvalues of
A− LC are at the desired location, p1, p2, . . . , pn.

Fact: Let F ∈ <n×n. Then, det(F ) = det(F T )

Therefore,

det(λI − F̄ ) = det(λI − F̄ T ).

Hence, F and F T have the same eigenvalues. So choosing L to assign the eignvalues of A− LC is
the same as choosing L to assign the eigenvalues of

(A− LC)T = AT − CTLT

We know how to do this, since this is the state feedback problem for:

ẋ = ATx+ CTu, u = v − LTC.
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The condition in which the eigenvalues can be placed arbitrarily is that (AT , CT ) is controllable.
However, from the PBH test, it is clear that:

rank
(
λI −AT CT

)
= rank

(
λI −A
C

)
the LHS is the controllability test, and the RHS is the observability test. Thus, the observer eigen-
values can be placed arbitrarily iff (A,C) is observable.

Example: Consider a second-order system

ẍ+ 2ζωnẋ+ ω2
nx = u

where u = 3 + 0.5 sin(0.75t) is the control input, and ζ = 1, ωn = 1rad/s. The state space
representation of the system is

d

dt

(
x
ẋ

)
=

(
0 1
−1 −2

)
+

(
0
1

)
u

y =
(
0 1

)
x

The observer is represented as:

d

dt

(
x̂
˙̂x

)
=

(
0 1
−1 −2

)
+

(
0
1

)
u− LC(x̂− x)

The observer gain L is computed by placing the observer poles at (−0.25 − 0.5).

L =

(
0.875
−1.25

)
See Fig. 4.13 for the plots of the observer states following and catching up with the actual system
states.
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Figure 4.13: Observer with output injection
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4.8 Properties of observer

• The observer is unbiased. The transfer function from u to x̂ is the same as the transfer
function from u to x.

• The observer error e = x̂− x is uncontrollable from the control u. This is because,

ė = (A− LC)e

no matter what the control u is.

• Let ν(t) := y(t) − Cx̂(t) be the innovation. Since ν(t) = Ce(t), the transfer function from
u(t) to ν(t) is 0.

• This has the significance that feedback control of the innovation of the form

U(s) = −KX̂(s)−Q(s)ν(s)

where A−BK is stable, and Q(s) is any stable controller (i.e. Q(s) itself does not have any
unstable poles), is necessarily stable. In fact, any stabilizing controller is of this form! (see
Goodwin et al. Section 18.6 for proof of necessity)

• Transfer function of the observer:

X̂(s) = T1(s)U(s) + T2(s)Y (s)

where

T1(s) := (sI −A+ LC)−1B

T2(s) := (sI −A+ LC)−1L

Both T1(s) and T2(s) have the same denominator, which is the characteristic polynomial of
the observer dynamics, Ψobs(s) = det(sI −A+ LC).

• With Y (s) given by Go(s)U(s) where Go(s) = C(sI − A)−1B is the open loop plant model,
the transfer function from u(t) to X̂(t) is

X̂(s) = [T1(s) + T2(s)G0(s)]U(s)

= (sI −A)−1BU(s)

i.e. the same as the open loop transfer function, from u(t) to x(t). In this sense, the observer
is unbiased.

Where should the observer poles be ?

Theoretically, the observer error will decrease faster if the eigenvalues of the A−LC are further
to the left (more negative). However, effects of measurement noise can be filtered out if eigenvalues
are slower. A rule of thumb is that if noise bandwidth is Brad/s, the fastest eigenvalue should be
greater than −B (i.e. slower than the noise band) (Fig. 4.14). This way, observer acts as a filter.

If observer states are used for state feedback, then the slowest eigenvalues of A−LC should be
faster than the eigenvalue of the state feedback system A−BK.



110 c©Perry Y.Li

text1
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Figure 4.14: Placing observer poles

4.9 Observer state feedback

For a system

ẋ = Ax+Bu

(4.2)

y = Cx

the observer structure is
˙̂x = Ax̂+Bu+ L(y − Cx̂) (4.3)

where y(t)−Cx̂(t) =: ν(t) is called innovation, which will be discussed later. Define observer error

e(t) = x̂(t)− x(t)

Stacking up (4.2) and (4.3) in matrix form,(
ẋ
˙̂x

)
=

(
A 0
LC A− LC

)(
x
x̂

)
+

(
B
B

)
u

Transforming the coordinates from

(
x
x̂

)
to

(
e
x̂

)
,

(
ė
˙̂x

)
=

(
A− LC 0
−LC A

)(
e
x̂

)
+

(
0
B

)
u

As seen from Fig. 4.15, there is no effect of control u on the error e, and if the gain vector L is
designed (by separation principle, see below) such that the roots of characteristic polynomial

ψA−LC(s) = det(sI −A+ LC)

are in the LHP, then the error tends asymptotically to zero. This means the observer has estimated
the system states to some acceptable level of accuracy. Now, the gain vector K can be designed to
implement feedback using the observer state:

u = v −Kx̂

where v is an exogenous control.

• Separation principle - the set of eigenvalues of the complete system is the union of the
eigenvalues of the state feedback system and the eigenvalues of the observer system. Hence,
state feedback and observer can in principle be designed separately.

eigenvalues = eig(A−BK) ∪ eig(A− LC)
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Figure 4.15: Observer coordinate transformation

• Using observer state feedback, the transfer function from v to x is the same as in state
feedback system:

X(s) = (sI − (A−BK))−1BV (s)

4.9.1 Innovation Feedback

As seen earlier, the term “innovation” is the error in output estimation, and is defined by

ν(t) := (y − Cx̂) (4.4)

To see how the innovation process is used in observer state feedback, let us first look at the
transfer function form of the state feedback law. From (4.3), we can write

˙̂x = (A− LC)x̂+Bu+ Ly

Taking Laplace transform, we get

X̂(s) = (sI −A+ LC)−1BU(s) + (sI −A+ LC)−1LY (s)

=
adj(sI −A+ LC)B

det(sI −A+ LC)
U(s) +

adj(sI −A+ LC)L

det(sI −A+ LC)
Y (s)

= T1(s)U(s) + T2(s)Y (s)

The state feedback law is

u(t) = −Kx̂(t) + v(t) (4.5)
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Taking Laplace transform,

U(s) = −KX̂(s) + V (s)

= −K(T1(s)U(s) + T2(s)Y (s))

(1 +KT1(s))U(s) = −KT2(s) + V (s)

L(s)

E(s)
U(s) = −P (s)

E(s)
Y (s) + V (s)

where

E(s) = det(sI −A+ LC)

L(s) = det(sI −A+ LC +BK)

P (s) = Kadj(sI −A)L

The expression for P (s) has been simplified using a matrix inversion lemma, see Goodwin, p. 522.
The nominal plant TF is

G0(s) =
Cadj(sI −A)B

det(sI −A)
=
B0(s)

A0(s)

The closed loop transfer function from V (s) to Y (s) is

Y (s)

V (s)
=

B0(s)E(s)

A0(s)L(s) +B0(s)P (s)

=
B0(s)

det(sI −A+BK)

=
B0(s)

F (s)

From (4.4), we have

ν(s) = Y (s)− CX̂(s)

= Y (s)− C(T1(s)U(s) + T2(s)Y (s))

= (1− CT2(s))Y (s)− CT1(s)U(s)

It can be shown (see Goodwin, p. 537) that

1− CT2(s) =
A0(s)

E(s)

CT1(s) =
B0(s)

E(s)

Therefore

ν(s) =
A0(s)

E(s)
Y (s)− B0(s)

E(s)
U(s)

Augmenting (4.5) with innovation process (see Fig. 4.16),

u(t) = v(t)−Kx̂(t) +Qu(s)ν(s)
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ẋ = Ax+Bu C
v u x y

�h6− K

- h-

�

˙̂x = Ax̂+Bu− Lν x̂
C

−
-
-

6

6−

Q(s)

ν(s)

Figure 4.16: Observer state feedback augmented with innovation feedback

where Q(s) is any stable transfer function (filter)

Then

L(s)

E(s)
U(s) = V (s)− P (s)

E(s)
Y (s) +Qu(s)

(
A0(s)

E(s)
Y (s)− B0(s)

E(s)
U(s)

)
The nominal sensitivity functions which define the robustness and performance criteria are

modified affinely by Qu(s):

S0(s) =
A0(s)L(s)

E(s)F (s)
−Qu(s)

B0(s)A0(s)

E(s)F (s)

T0(s) =
B0(s)P (s)

E(s)F (s)
+Qu(s)

B0(s)A0(s)

E(s)F (s)

For plants the are open loop stable with tolerable pole locations, we can set K − 0 so that

F (s) = A0(s)

L(s) = E(s)

P (s) = 0

so that

S0(s) = 1−Qu(s)
B0(s)

E(s)

T0(s) = Qu(s)
B0(s)

E(s)

In this case, it is common to use Q(s) := Qu(s)A0(s)
E(s) . Then

S0(s) = 1−Q(s)G0(s)

T0(s) = Qu(s)G0(s)
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Thus the design of Qu(s)(or Q(s)) can be used to directly influence the sensitivity functions.

Example: Consider a previous example:

ẍ+ 2ζωnẋ+ ω2
nx = u

where u = 3 + 0.5 sin(0.75t) is the control input, and ζ = 1, ωn = 1rad/s. The state space
representation of the system is

d

dt

(
x
ẋ

)
=

(
0 1
−1 −2

)
+

(
0
1

)
u

y =
(
0 1

)
x

The observer is represented as:

d

dt

(
x̂
˙̂x

)
=

(
0 1
−1 −2

)
+

(
0
1

)
u− LC(x̂− x)

The observer gain L is computed by placing the observer poles at (−0.25 − 0.5).

L =

(
0.875
−1.25

)
The state feedback law is

u = v −Kx̂+Q(s)ν(s)

where K = (1 1) is computed by placing closed loop poles at (−1 − 2). The relevant transfer
functions as seen above are:

G0(s) =
B0(s)

A0(s)
=

1

s2 + 2s+ 1

E(s) = det(sI −A+ LC) = s2 + 0.75s+ 0.125

L(s) = det(sI −A+ LC +BK) = s2 + 2.375s− 3.1562

P (s) = Kadj(sI −A)L =
(
1 1

)(s+ 2 1
−1 s

)(
0.875
−1.25

)
= −0.375(s+ 1)

F (s) = det(sI −A+BK) = s2 + 3.625s− 0.25

The sensitivity functions are

S0(s) =
s4 + 4.375s3 + 2.594s2 − 3.937s− 3.156

s4 + 4.375s3 + 2.594s2 + 0.2656s− 0.03125
−Qu(s)

s2 + 2s+ 1

s4 + 4.375s3 + 2.594s2 + 0.2656s− 0.03125

T0(s) =
−0.375s− 0.375

s4 + 4.375s3 + 2.594s2 + 0.2656s− 0.03125
+Qu(s)

s2 + 2s+ 1

s4 + 4.375s3 + 2.594s2 + 0.2656s− 0.03125

Now, Qu(s) can be selected to reflect the robustness and performance requirements of the system.

4.10 Internal model principle in states space

Method 1 Disturbance estimate
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Suppose that disturbance enters a state space system:

ẋ = Ax+B(u+ d)

y = Cx

Assume that disturbance d(t) is unknown, but we know that it satisfies some differential equations.
This implies that d(t) is generated by an exo-system.

ẋd = Adxd

d = Cdxd

Since,

D(s) = Cd(sI −Ad)−1xd(0) = Cd
Adj(sI −Ad)
det(sI −Ad)

xd(0)

where xd(0) is iniital value of xd(t = 0). Thus, the disturbance generating polynomial is nothing
but the characteristic polynomial of Ad,

Γd(s) = det(sI −Ad)

For example, if d(t) is a sinusoidal signal,(
ẋd1
ẋd2

)
=

(
0 1
−ω2 0

)(
xd1
xd2

)
d = xd1

The characteristic polynomial, as expected, is:

Γd(s) = det(sI −Ad) = s2 + ω2

If we knew d(t) then an obvious control is:

u = −d+ v −Kx

where K is the state feedback gain. However, d(t) is generally unknown. Thus, we estimate it using
an observer. First, augment the plant model.(

ẋ
ẋd

)
=

(
A BCd
0 Ad

)(
x
xd

)
+

(
B
0

)
u

y =
(
C 0

)( x
xd

)
Notice that the augmented system is not controllable from u. Nevertheless, if d has effect on y,

it is observable from y.
Thus, we can design an observer for the augmented system, and use the observer state for

feedback:

d

dt

(
x̂
x̂d

)
=

(
A BCd
0 Ad

)(
x̂
x̂d

)
+

(
B
0

)
u+

(
L1

L2

){
y −

(
C 0

)( x̂
x̂d

)}
u = −Cdx̂d + v −Kx̂ = v −

(
K Cd

)( x̂
x̂d

)
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where L = [LT1 , L
T
2 ]T is the observer gain. The controller can be simplified to be:

d

dt

(
x̂
xd

)
=

(
A−BK − L1C 0

−L2C Ad

)(
x̂
x̂d

)
−
(
−B L1

0 L2

)(
v
y

)
u = −

(
K Cd

)( x̂
x̂d

)
+ v

The y(t)→ u(t) controller transfer function Gyu(s) has, as poles, eigenvalues of A−BK−L1C
and of Ad. Since Γd(s) = det(sI − Ad) the disturbance generating polynomial, the controller has
Γd(s) in its denominator.

This is exactly the Internal Model Principle.
Example: For the system

ẋ =

(
0 1
−1 −2

)
x+

(
0
1

)
u

y =
(
0 1

)
The disturbance is a sinusoidal signal d(t) = sin(0.5t). The reference input is a constant step
v(t) = 3. The gains were designed to be:

K =
(
5 3

)
with closed loop poles at (−2 − 3).

L =
(
LT1 LT2

)T
=
(
2.2 0.44 2.498 −0.746

)T
with observer poles at (−0.6 − 0.5 − 1.7 − 1.4). Figures 4.17 - 4.19 show the simulation results.
For a reference signal v(t) = 3 + 0.5 sin 0.75t, the results are shown in Figures 4.20 - 4.22. In this
case,

K =
(
0.75 2

)
with closed loop poles at (−0.5 − 3.5).

L =
(
LT1 LT2

)T
=
(
−13.2272 6.7 8.2828 14.493

)T
with observer poles at (−0.6 − 0.5 − 1.7 − 1.4).
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Figure 4.17: States of (left)open loop system and (right)observer state feedback
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Figure 4.18: Output of (left)open loop system and (right)observer state feedback
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Figure 4.19: (Left)Control and disturbance signals; (right)disturbance estimation
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Figure 4.20: States of (left)open loop system and (right)observer state feedback
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Figure 4.21: Output of (left)open loop system and (right)observer state feedback
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Figure 4.22: (Left)Control and disturbance signals; (right)disturbance estimation



University of Minnesota ME 8281: Advanced Control Systems Design, 2001-2012 119

Method 2: Augmenting plant dynamics
In this case, the goal is to introduce the disturbance generating polynomial into the controller

dynamics by filtering the output y(t). Let ẋd = Adxd, d = Cdxd be the disturbance model.
Nominal plant and output filter:

ẋ = Ax+Bu+Bd

y = Cx

ẋa = ATd xa + CTd y(t)

Stabilize the augmented system using (observer) state feedback:

u = −[Ko Ka]

(
x̂
xa

)
where x̂ is the observer estimate of the original plant itself.

˙̂x = Ax̂+Bu+ L(y − Cx̂).

Notice that xa need not be estimated since it is generated by the controller itself!
The transfer function of the controller is: C(s) =

(
Ko Ka

)(sI −A+BKo + LC BKo

0 sI −Ad

)−1(
L
CTd

)
from which it is clear that the its denominator has Γd(s) = det(sI − Ad) in it. i.e. the Internal
Model Principle.

An intuitive way of understanding this approach:
For concreteness, assume that the disturbance d(t) is a sinusoid with frequency ω.

• Suppose that the closed loop system is stable. This means that for any bounded input, any
internal signals will also be bounded.

• For the sake of contradiction, if some residual sinusoidal response in y(t) still remains:

Y (s) =
α(s, 0)

s2 + ω2

• The augmented state is the filtered version of Y (s),

U(s) = −KaXa(s) =
Kaα(s, 0)

s2 + ω2

The time response of xa(t) is of the form

xa(t) = γsin(ωt+ φ1) + δ · t · sin(ωt+ φ2)

The second term will be unbounded.

• Since d(t) is a bounded sinusoidal signal, xa(t) must also be bounded. This must mean that
y(t) does not contain sinusoidal components with frequency ω.
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Figure 4.23: States of (left)open loop system and (right)augmented state feedback

The most usual case is to combat constant disturbances using integral control. In this case, the
augmented state is:

xa(t) =

∫ t

0
y(τ)dτ.

It is clear that if the output converges to some steady value, y(t)→ y∞, y∞ must be 0. Or otherwise
xa(t) will be unbounded.

Example: Consider the same example as before. But this time, we do not use an observer to
estimate the disturbance. The dynamics is augmented to include a filter. The gains were selected
as:

L =
(
5.7 2.3

)T
with observer poles at (−3.5 − 4.2).

Ko = (3.02 2.18) Ka = (0.5 0.76)

with the closed loop poles at (−2.1 − 1.2 − 2.3 − 0.6). The results are shown in Figures
4.23 - 4.25 for a constant reference input v(t) = 3. The filter state contains the frequency of the
disturbance signal, and hence the feedback law contains that frequency. Hence the control signal
cancels out the disturbance. This is seen from the output, which does not contain any sinusoidal
component.
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Figure 4.24: Output of (left)open loop system and (right)augmented state feedback
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Figure 4.25: (left)control and disturbance signals; (right)filter state xa


