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1 1. Concepts 1.1 Main Idea

Main Idea

Objective:
Minimize lap time

Constraints:
Avoid other cars
Stay on road
Don’t skid
Limited acceleration

Intuitive approach:
Look forward and plan path
based on

Road conditions
Upcoming corners
Abilities of car
etc...
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1 1. Concepts 1.1 Main Idea

Optimization-Based Control

Minimize (lap time)
while avoid other cars

stay on road
...

Solve optimization problem to
compute minimum-time path

MPC Part I – Introduction C. Jones, F. Borrelli, M. Morari - Spring Semester 2015 1-3



1 1. Concepts 1.1 Main Idea

Optimization-Based Control

Minimize (lap time)
while avoid other cars

stay on road
...

Solve optimization problem to
compute minimum-time path
What to do if something
unexpected happens?

We didn’t see a car around
the corner!
Must introduce feedback
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1 1. Concepts 1.1 Main Idea

Optimization-Based Control

Minimize (lap time)
while avoid other cars

stay on road
...

Solve optimization problem to
compute minimum-time path
Obtain series of planned control
actions
Apply first control action
Repeat the planning procedure
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Model Predictive Control

P(s)%

Objectives Model Constraints

Plant
Optimizer




Measurements 

Output  Input  Reference  

Objectives Model Constraints

PlanDo

PlanDo

PlanDo
Time

Receding horizon strategy introduces feedback.
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1 1. Concepts 1.2 Classical Control vs MPC

Two Different Perspectives

Classical design: design C

Dominant issues addressed
Disturbance rejection (d → y)
Noise insensitivity (n → y)
Model uncertainty

(usually in frequency domain)

MPC: real-time, repeated optimiza-
tion to choose u(t)

Dominant issues addressed
Control constraints (limits)
Process constraints (safety)

(usually in time domain)
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1 1. Concepts 1.2 Classical Control vs MPC

Constraints in Control
All physical systems have constraints:

Physical constraints, e.g. actuator limits
Performance constraints, e.g. overshoot
Safety constraints, e.g. temperature/pressure limits

Optimal operating points are often near constraints.
Classical control methods:

Ad hoc constraint management
Set point sufficiently far from constraints
Suboptimal plant operation

Predictive control:
Constraints included in the design
Set point optimal
Optimal plant operation

Optimal Operation and Constraints

PSfrag replacements

constraint

set point
time

ou
tp

ut Classical Control
No knowledge of constraints
Set point far from constraints
Suboptimal plant operation

PSfrag replacements

constraint

set point
time

ou
tp

ut Predictive Control
Constraints included in design
Set point closer to optimal
Improved plant operation

4F3 Predictive Control - Lecture 1 – p.3/11
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1 1. Concepts 1.3 Mathematical Formulation

MPC: Mathematical Formulation

U ∗t (x(t)) := argmin
Ut

N−1∑
k=0

q(xt+k , ut+k)

subj. to xt = x(t) measurement
xt+k+1 = Axt+k + But+k system model
xt+k ∈ X state constraints
ut+k ∈ U input constraints
Ut = {ut , ut+1, . . . , ut+N−1} optimization variables

Problem is defined by
Objective that is minimized,
e.g., distance from origin, sum of squared/absolute errors, economic,...
Internal system model to predict system behavior
e.g., linear, nonlinear, single-/multi-variable, ...
Constraints that have to be satisfied
e.g., on inputs, outputs, states, linear, quadratic,...
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1 1. Concepts 1.3 Mathematical Formulation

MPC: Mathematical Formulation

At each sample time:
Measure / estimate current state x(t)
Find the optimal input sequence for the entire planning window N :
U ∗t = {u∗t , u∗t+1, . . . , u∗t+N−1}
Implement only the first control action u∗t
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2 2. Examples

MPC: Applications

Production planning

Nurse rostering

Buildings

Power systems

Train scheduling

Refineries

Traction control

Computer control ns

𝜇s

ms

Seconds

Minutes

Hours

Days

Weeks
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2 2. Examples 2.1 Ball on Plate

Ball on Plate
Movable plate (0.66m x 0.66m)
Can be revolved around two axis
[+17◦;−17◦] by two DC motors
Angle is measured by potentiometers
Position of the ball is measured by a camera
Model: Linearized dynamics, 4 states, 1
input per axis
Input constraints: Voltage of motors
State constraints: Boundary of the plate,
angle of the plate

[R. Waldvogel. Master Thesis ETH, 2010 ]
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2 2. Examples 2.1 Ball on Plate

Ball on Plate
Controller comparison: LQR vs. MPC in the presence of input constraints

[+2.3o ; -2.3o]

sampling   
time: 0.01s
prediction 
horizon: 20

Figure : LQR (red) vs MPC (blue)

[+2.3o ; -2.3o]

sampling   
time: 0.01s
prediction 
horizon: 20

Figure : Input β for the upper left corner.

MPC introduces preview by predicting the state over a finite horizon

[R. Waldvogel. Master Thesis ETH, 2010 ]
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2 2. Examples 2.1 Ball on Plate

Ball on Plate
MPC Control of a Ball and Plate System:

[R. Waldvogel. Master Thesis ETH, 2010 ]
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2 2. Examples 2.2 Autonomous Quadrocopter Flight

Autonomous Quadrocopter Flight

Quadrocopters:
Highly agile due to fast rotational dynamics
High thrust-to-weight ratio allows for large
translational accelerations
Motion control by altering rotation rate and/or pitch
of the rotors
High thrust motors enable high performance control

Control Problem:
Nonlinear system in 6D (position, attitude)
Constraints: limited thrust, rates,...
Task: Hovering, trajectory tracking
Challenges: Fast unstable dynamics

guaranteed by limiting trajectory jerk and acceleration
such that the actual control inputs do not saturate.

In Section 2, we introduce the dynamic quadrocopter
model used in the trajectory generation. Feasibility con-
straints on trajectories are derived in Section 3. In Sec-
tion 4, the planning problem is presented, simplified, and
solved. Section 5 presents the implicit feedback control law
resulting from running the trajectory generation algorithm
at each controller update. The experimental setup and
results are shown in Section 6. Conclusions are drawn in
Section 7, along with an outlook for future research.

2. DYNAMIC MODEL

The quadrocopter is described by six degrees of freedom:
the translational position (x, y, z) is measured in the
inertial coordinate system O as shown in Figure 1. The
vehicle attitude V is defined by the rotation matrix O

VR.
The rotation matrix is defined such that, when multiplying
a vector v in the vehicle coordinate V system with it, the
same vector, described in the inertial coordinate system
O, is obtained:

Ov = O

VR Vv (1)

2.1 Control Inputs

The control inputs of the quadrotor vehicle are the desired
rotational rates about the vehicle body axes, ωx, ωy, and
ωz, and the mass-normalized collective thrust, a, as shown
in Figure 2.

High-bandwidth controllers on the vehicle track the de-
sired rates using feedback from gyroscopes. The quadro-
copter has very low rotational inertia, and can produce
high torques due to the outward mounting of the pro-
pellers. This results in very high achievable rotational
accelerations ω̇x and ω̇y on the order of 200 rad/s2. The
vehicle has a very fast response time to changes in the
desired rotational rate (experimental results have shown
time constants on the order of 20ms for changes that do
not saturate the motors). It is therefore assumed that we
can directly control the vehicle body rates and ignore rota-
tional acceleration dynamics. Rotational accelerations ω̇z

are created by causing a drag difference between propellers
rotating in opposite directions. Achievable accelerations
are significantly lower at about 19 rad/s2. However, we will

ωx

ωy ωz

a

Fig. 2. The control inputs of the quadrocopter: The rota-
tional rates ωx, ωy, and ωz are tracked by an on-board
controller, using gyroscope feedback.

show that ωz does not greatly influence the dynamics of
the vehicle in this algorithm.

Like the vehicle body rates, it is assumed that the thrust
can be changed instantaneously. Experimental results have
shown that the true thrust dynamics are about as fast
as the rotational dynamics, with propeller spin-up being
noticeably faster than spin-down.

It is further assumed that all control inputs are subject to
saturation. The magnitude of the vehicle body rates are
limited (such limitations can be caused, for example, by
the range of the gyroscopes, or limitations of the body rate
tracking controllers). The collective thrust is limited by a
minimum and a maximum thrust

amin ≤ a ≤ amax, (2)

where amin > 0. This limitation is motivated by typical
quadrotor vehicles having propellers of fixed-pitch type,
and not being able to reverse their direction of rotation in
flight.

2.2 Equations of Motion

The translational acceleration of the vehicle is dictated by
the attitude of the vehicle and the total thrust produced
by the four propellers. The translational acceleration in
the inertial frame is[

ẍ
ÿ
z̈

]
= O

VR

[
0
0
a

]
+

[
0
0

−g

]
. (3)

The change of vehicle attitude is related to the rotational
control inputs through [Hughes, 1986]

O

VṘ = O

VR

[
0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

]
. (4)

3. FEASIBILITY CONDITIONS FOR
TRAJECTORIES

We calculate the control inputs for a given trajectory,
allowing the inspection of the effects of the control input
limitations on the feasibility of trajectories. Feasible tra-
jectories must fulfill the equations of motion (3) and (4)
and the required control inputs must not exceed allowable
values.

3.1 Control Inputs for a Given Trajectory

Let (x(t), y(t), z(t)) denote a candidate vehicle trajectory.
For notational convenience, we omit the time dependency
from here on. Taking the second derivative of the trajec-
tory and combining it with the translational equation of
motion (3), we introduce the vector f representing the
total mass-normalized forces required by the quadrotor to
follow the trajectory:

f :=

[
ẍ
ÿ
z̈

]
+

[
0
0
g

]
= O

VR

[
0
0
a

]
. (5)

Using the two-norm (denoted by ‖·‖), the thrust a required
to follow the trajectory can be calculated:
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Autonomous Quadrocopter flight
LQR MPC

[M. Burri. Master Thesis ETH, 2011 ]

MPC Part I – Introduction C. Jones, F. Borrelli, M. Morari - Spring Semester 2015 2-14



2 2. Examples 2.2 Autonomous Quadrocopter Flight

Autonomous Quadrocopter flight

[GRASP Lab. University of Pennsylvania, 2012; http://www.grasp.upenn.edu/]
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2 2. Examples 2.3 Autonomous dNaNo Race Cars

Autonomous dNaNo Race Cars
Race car:

1:43 scale, very light (50g) and fast
Radio controlled
2.4GHz transmitter allows to run up to 40 cars

Control Problem:
Nonlinear model in 4D (position, orientation)
Constraints: acceleration, steering angle, race
track, other cars...
Task: Optimal path planning and path following
Challenges: State estimation, effects that are
difficult to model/measure, e.g. slip, small
sampling times

MPC Part I – Introduction C. Jones, F. Borrelli, M. Morari - Spring Semester 2015 2-16

2 2. Examples 2.3 Autonomous dNaNo Race Cars

Autonomous dNaNo Race Cars

[ORCA Racer Project. ETH, 2011; http://orcaracer.ethz.ch/]
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2 2. Examples 2.4 Energy Efficient Building Control

Energy Efficient Building Control
Buildings account for approx. 40% of global energy use
Most energy is consumed during use of the buildings
Building sector has large potential for cost-effective
reduction of CO2 emissions
Most investments in buidlings are expected to pay back
through reduced energy bills

Use of MPC for Building Control 

4. March 2010, ETH Zurich MeteoSwiss 

Why Buildings?  (4/4) 

 7  

Source: Watson, J. (ed.) (2008):  Sustainable Urban Infrastructure, London Edition – a view to 2025.  

Siemens AG, Corporate Communications (CC) Munich, 71pp. 

Greenhouse gas abatement cost curve for London buildings (2025, decision maker perspective) 

Most investments in buildings are expected to  

pay back through reduced energy bills 
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2 2. Examples 2.4 Energy Efficient Building Control

Energy Efficient Building Control
Integrated Room Automation:
Integrated control of heating, cooling, ventilation,
electrical lighting, blinds,... of a single room/zone

Control Task: Use minimum amount of energy (or money) to keep room
temperature, illuminance level and CO2 concentration in prescribed comfort ranges

Use of MPC for Building Control 

4. March 2010, ETH Zurich MeteoSwiss 

Control Task 

Use minimum amount of energy (or money) to keep the  

room temperature, illuminance level and CO2 concentration 

in prescribed comfort ranges 

 9  

[OptiControl Project, ETH. 2010; http://www.opticontrol.ethz.ch/]
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2 2. Examples 2.4 Energy Efficient Building Control

Energy Efficient Building Control

Building

MPC
-  model
-  optimization

control  
inputs 

Predictions of … 
•  weather  
•  occupancy  
•  electricity prices 
•  network load 
•  …. 
 comfort criteria 

MPC opens the possibility to
exploit building’s thermal storage capacity
use predictions of future disturbances, e.g. weather, for better planning
use forecasts of electricity prices to shift electricity demand for grid-friendly
behavior
offer grid-balancing services to the power network
...

while respecting requirements for building usage (temperature, light, ...)
MPC Part I – Introduction C. Jones, F. Borrelli, M. Morari - Spring Semester 2015 2-20
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2 2. Examples 2.4 Energy Efficient Building Control

Energy Efficient Building Control
Optimize energy efficiency using weather
predictions:

MPC: Stochastic MPC
RBC: Current best practice Rule Based
Controller

Time step [h] 

Time step [h] 

Stochastic MPC, building case 3 

RBC, building case 3 

[OptiControl Project. ETH, 2010; http://www.opticontrol.ethz.ch/]
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2 2. Examples 2.5 Kite Power

Kite Power
Wind energy has potential to supply global
energy need.
Current wind technology is not able to
exploit the potential

Traditional inland wind turbines are close
to scaling limits
Economic operation only possible at a
limited number of locations

Idea: Exploit the energy of high-altitude wind by
means of light tethered wings (kites)
Goal: Wind power at lower cost than coal

18

Control of tethered wings for high-altitude wind energy generation L. Fagiano

Politecnico di Torino
DAUIN

UC Santa Barbara
Mechanical Engineering

HAWE: basic concepts

• In wind towers, the outermost 30% of the blades contributes for 80% of 
the power.

• Replace the bulky structure of the tower with a light and efficient 
tethered wing and generate energy at ground level.

Wind tower HAWE

270 t ~ 16 t

Wind speed m/s

Al
tit

ud
e

Exploit that
Wind speed at 800m
= 1.5 x speed at 80m
Power density
= (wind speed)3
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2 2. Examples 2.5 Kite Power

Kite Power
Different kites proposed: flexible vs. rigid
wings (different models, nonlinear)
On board vs. ground level generator
Ground level seems to be more viable for
large-scale
Number of lines?

Kite control problem:
Maximize the net generated energy
Maintain stability of the wing
Exploit crosswind, i.e. kites fly transverse to
wind at high speed
Satisfy physical constraints: keep the kite far
away from the ground, avoid line wrapping...
Each configuration and working phase has
its own performance goal

[A. Zgraggen, ETH, 2011]
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2 2. Examples 2.5 Kite Power

Kite Power

[Airbone Wind Energy Group. ETH, 2013; http://control.ee.ethz.ch/˜awe/]
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2 2. Examples 2.6 Automotive Systems

Audi Smart Engine

Fact: Do not accelerate if there is a traffic jam, you will only waste fuel.
Idea: Use traffic forecast to regulate the speed of a car to save fuel while
getting to destination on time.

MPC regulates the desired speed (through an Automatic Cruise Control) in
order to reach the destination in the most fuel-efficient way, given a
not-to-exceed arrival time.
Min and Max traffic speed forecast and road grade used in the MPC
constraints and model.
Min and Max traffic speed forecast obtained from sensors embedded in the
highway on each lane. (Available in the Bay Area, California).

[Khout, Borrelli and Hedrick. 15th World Congress on ITS, 2008 ]
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2 2. Examples 2.6 Automotive Systems

Ford Autonomous Driving on Ice
Autonomous double-lane change.
Road forecast and nonlinear vehicle model (driving on ice) used in MPC.
MPC controls differential braking and steering.
Experimental results @ 72 km/h on ice.

[Falcone, Borrelli et al. International Journal Vehicle Autonomous Systems, 2009 ]
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2 2. Examples 2.6 Automotive Systems

Volvo

Autonomous lane keeping (minimally invasive).
Road forecast and vehicle model used in MPC.
MPC controls braking and steering.

[Gray, Ali, Gao, Hedrick and Borrelli. IEEE Transactions on Intelligent Transportation Systems, 2013 ]
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2 2. Examples 2.7 Robotic Chameleon

Robotic Chameleon
Tracking an object (point in video) using two independent cameras.
MPC controls cameras pan tilt and zoom to keep object in a given field of
view (constraints).
MPC uses cameras models and forecast the object position (assuming moving
at constant acceleration over the prediction horizon).
Experimental results with MPC solved at 100 Hz.

[Avin, Borrelli et al. Autonomous Robots, 2008 ]
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3 3. Summary and Outlook 3.1 Summary

Summary: MPC

At each sample time:
Measure /estimate current state x(t)
Find the optimal input sequence for the entire planning window N :
U ∗t = {u∗t , u∗t+1, . . . , u∗t+N−1}
Implement only the first control action u∗t
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3 3. Summary and Outlook 3.1 Summary

Summary

Obtain a model of the system
Design a state observer
Define optimal control problem
Set up optimization problem in optimization software
Solve optimization problem to get optimal control sequence
Verify that closed-loop system performs as desired,
e.g., check performance criteria, robustness, real-time aspects,...

MPC Part I – Introduction C. Jones, F. Borrelli, M. Morari - Spring Semester 2015 3-30

3 3. Summary and Outlook 3.1 Summary

Important Aspects of Model Predictive Control
Main advantages:

Systematic approach for handling constraints
High performance controller

Main challenges:
Implementation
MPC problem has to be solved in real-time, i.e. within the sampling interval
of the system, and with available hardware (storage, processor,...).
Stability
Closed-loop stability, i.e. convergence, is not automatically guaranteed
Robustness
The closed-loop system is not necessarily robust against uncertainties or
disturbances
Feasibility
Optimization problem may become infeasible at some future time step, i.e.
there may not exist a plan satisfying all constraints
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3 3. Summary and Outlook 3.1 Summary

Outlook

Part II: Constrained Finite Time Optimal Control
Formulating and solving the optimization problem online
Part III: Feasibility and Stability
Guaranteeing feasibility and stability by design
Advanced Topics
Tracking, Soft-Constraints, Explicit MPC, Hybrid Systems
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1 1. Constrained Linear Optimal Control 1.1 Problem formulation

Constrained Linear Optimal Control

Cost function

J0(x(0), U0) = p(xN ) +
N−1∑
k=0

q(xk , uk)

U0 , [u′0, . . . , u′N−1]′

Squared Euclidian norm: p(xN ) = x ′N PxN and q(xk , uk) = x ′kQxk + u′kRuk .
p = 1 or p =∞: p(xN ) = ‖PxN‖p and q(xk , uk) = ‖Qxk‖p + ‖Ruk‖p.

Constrained Finite Time Optimal Control problem (CFTOC)

J ∗0 (x(0)) = minU0 J0(x(0), U0)
subj. to xk+1 = Axk + Buk , k = 0, . . . , N − 1

xk ∈ X , uk ∈ U , k = 0, . . . , N − 1
xN ∈ Xf
x0 = x(0)

(1)

N is the time horizon and X , U , Xf are polyhedral regions.
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1 1. Constrained Linear Optimal Control 1.2 Feasible Sets

Feasible Sets

Set of initial states x(0) for which the optimal control problem (1) is feasible:

X0 = {x0 ∈ Rn| ∃(u0, . . . , uN−1) such that xk ∈ X , uk ∈ U ,
k = 0, . . . , N − 1, xN ∈ Xf , where xk+1 = Axk + Buk}

In general Xi is the set of states xi at time i for which (1) is feasible:

Xi = {xi ∈ Rn| ∃(ui , . . . , uN−1) such that xk ∈ X , uk ∈ U ,
k = i, . . . , N − 1, xN ∈ Xf , where xk+1 = Axk + Buk},

The sets Xi for i = 0, . . . , N play an important role in the the solution of the
CFTOC problem. They are independent of the cost.
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1 1. Constrained Linear Optimal Control 1.3 Unconstrained Solution

Unconstrained Solution
Results from Lectures on Days 1 & 2

For quadratic cost (squared Euclidian norm) and no state and input constraints:

{x ∈ X , u ∈ U} = Rn+m, Xf = Rn

we have the time-varying linear control law

u∗(k) = Fkx(k) k = 0, . . . , N − 1.

If N →∞, we have the time-invariant linear control law

u∗(k) = F∞x(k) k = 0, 1, . . .

Next we show how to compute finite time constrained optimal controllers.
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Problem Formulation

Quadratic cost function

J0(x(0), U0) = x ′N PxN +
N−1∑
k=0

x ′kQxk + u′kRuk (2)

with P � 0, Q � 0, R � 0.
Constrained Finite Time Optimal Control problem (CFTOC).

J ∗0 (x(0)) = min
U0

J0(x(0), U0)
subj. to xk+1 = Axk + Buk , k = 0, . . . , N − 1

xk ∈ X , uk ∈ U , k = 0, . . . , N − 1
xN ∈ Xf
x0 = x(0)

(3)

N is the time horizon and X , U , Xf are polyhedral regions.
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2 2. Constrained Optimal Control: 2-Norm 2.2 Construction of the QP with substitution

Construction of the QP with substitution

Step 1: Rewrite the cost as (see lectures on Day 1 & 2)

J0(x(0), U0) = U ′0HU0 + 2x(0)′FU0 + x(0)′Yx(0)
= [U ′0 x(0)′]

[
H F′
F Y

]
[U0
′ x(0)′]′

Note:
[

H F′
F Y

]
� 0 since J0(x(0), U0) ≥ 0 by assumption.

Step 2: Rewrite the constraints compactly as (details provided on the next
slide)

G0U0 ≤ w0 + E0x(0)

Step 3: Rewrite the optimal control problem as

J ∗0 (x(0)) = min
U0

[U ′0 x(0)′]
[

H F′
F Y

]
[U0
′ x(0)′]′

subj. to G0U0 ≤ w0 + E0x(0)
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2 2. Constrained Optimal Control: 2-Norm 2.2 Construction of the QP with substitution

Solution

J ∗0 (x(0)) = min
U0

[U ′0 x(0)′]
[

H F′
F Y

]
[U0
′ x(0)′]′

subj. to G0U0 ≤ w0 + E0x(0)

For a given x(0) U ∗0 can be found via a QP solver.
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2 2. Constrained Optimal Control: 2-Norm 2.2 Construction of the QP with substitution

Construction of QP constraints with substitution

If X , U and Xf are given by:

X = {x |Axx ≤ bx} U = {u |Auu ≤ bu} Xf = {x |Af x ≤ bf }

Then G0, E0 and w0 are defined as follows

G0 =



Au 0 . . . 0
0 Au . . . 0
...

...
. . .

...
0 0 . . . Au
0 0 . . . 0

AxB 0 . . . 0
AxAB AxB . . . 0

...
...

. . .
...

Af AN−1B Af AN−2B . . . Af B


, E0 =



0
0
...
0
−Ax
−AxA
−AxA2

...
−Af AN


, w0 =



bu
bu
...

bu
bx
bx
bx
...

bf
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2 2. Constrained Optimal Control: 2-Norm 2.3 Construction of the QP without substitution

Construction of the QP without substitution

To obtain the QP problem

J ∗0 (x(0)) = min
U0

[U ′0 x(0)′]
[

H F′
F Q

]
[U0
′ x(0)′]′

subj. to G0U0 ≤ w0 + E0x(0)

we have substituted the state equations

xk+1 = Axk + Buk

into the state constraints xk ∈ X .

It is often more efficient to keep the explicit equality constraints.
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2 2. Constrained Optimal Control: 2-Norm 2.3 Construction of the QP without substitution

Construction of the QP without substitution
We transform the CFTOC problem into the QP problem

J ∗0 (x(0)) = min
z

[z ′ x(0)′]
[

H̄ 0
0 Q

]
[z ′ x(0)′]′

subj. to G0,inz ≤ w0,in + E0,inx(0)
G0,eqz = E0,eqx(0)

Define variable:

z =
[
x ′1 . . . x ′N u′0 . . . u′N−1

]′
Equalities from system dynamics xk+1 = Axk + Buk :

G0,eq =


I −B
−A I −B
−A I −B

. . . . . . . . .
−A I −B

 , E0,eq =


A
0
...
0
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Construction of the QP without substitution
If X , U and Xf are given by:

X = {x |Axx ≤ bx} U = {u |Auu ≤ bu} Xf = {x |Af x ≤ bf }

Then matrices G0,in, w0,in and E0,in are:

G0,in =



0 0
Ax 0

. . . . . .
Ax 0

Af 0
0 Au

0 Au
. . . . . .

0 Au
0 Au


w0,in =



bx
bx
...

bx
bf
bu
bu
...

bu
bu


E0,in =

[
−A′x 0 · · · 0

]′
MPC Part II – CFTOC F. Borrelli, M. Morari, C. Jones - Spring Semester 2015 2-12



2 2. Constrained Optimal Control: 2-Norm 2.3 Construction of the QP without substitution

Construction of the QP without substitution

Build cost function from MPC cost x ′N PxN +
∑N−1

k=0 x ′kQxk + u′kRuk

H̄ =



Q
. . .

Q
P

R
. . .

R


Matlab hint:
barH = blkdiag(kron(eye(N-1),Q), P, kron(eye(N),R))

MPC Part II – CFTOC F. Borrelli, M. Morari, C. Jones - Spring Semester 2015 2-13

2 2. Constrained Optimal Control: 2-Norm 2.4 2-Norm State Feedback Solution

Table of Contents

2. Constrained Optimal Control: 2-Norm
2.1 Problem Formulation
2.2 Construction of the QP with substitution
2.3 Construction of the QP without substitution
2.4 2-Norm State Feedback Solution

MPC Part II – CFTOC F. Borrelli, M. Morari, C. Jones - Spring Semester 2015



2 2. Constrained Optimal Control: 2-Norm 2.4 2-Norm State Feedback Solution

2-Norm State Feedback Solution
Start from QP with substitution.

Step 1: Define z , U0 + H−1F ′x(0) and transform the problem into

Ĵ ∗(x(0)) = min
z

z ′Hz
subj. to G0z ≤ w0 + S0x(0),

where S0 , E0 + G0H−1F ′, and
Ĵ ∗(x(0)) = J ∗0 (x(0))− x(0)′(Y − FH−1F ′)x(0).

The CFTOC problem is now a multiparametric quadratic program
(mp-QP).

Step 2: Solve the mp-QP to get explicit solution z∗(x(0))

Step 3: Obtain U ∗0 (x(0)) from z∗(x(0))
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2-Norm State Feedback Solution

Main Results
1 The Open loop optimal control function can be obtained by solving the

mp-QP problem and calculating U ∗0 (x(0)), ∀x(0) ∈ X0 as
U0
∗ = z∗(x(0))−H−1F ′x(0).

2 The first component of the multiparametric solution has the form

u∗(0) = f0(x(0)), ∀x(0) ∈ X0,

f0 : Rn → Rm, is continuous and PieceWise Affine on Polyhedra

f0(x) = F i
0x + gi

0 if x ∈ CRi
0, i = 1, . . . , N r

0

3 The polyhedral sets CRi
0 = {x ∈ Rn|H i

0x ≤ K i
0}, i = 1, . . . , N r

0 are a
partition of the feasible polyhedron X0.

4 The value function J ∗0 (x(0)) is convex and piecewise quadratic on polyhedra.
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Example

Consider the double integrator x(t + 1) =
[

1 1
0 1

]
x(t) +

[
0
1

]
u(t)

y(t) =
[

1 0
]

x(t)

subject to constraints
−1 ≤ u(k) ≤ 1, k = 0, . . . , 5[

−10
−10

]
≤ x(k) ≤

[
10
10

]
, k = 0, . . . , 5

Compute the state feedback optimal controller u∗(0)(x(0)) solving the CFTOC

problem with N = 6, Q = [ 1 0
0 1 ], R = 0.1, P the solution of the ARE, Xf = R2.
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Example

−10 −5 0 5 10
−10

−5

0

5

10

 x
1
(0)

 x
2(0

)

Figure : Partition of the state space for the affine control law u∗(0) (N r
0 = 13)
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3 3. Constrained Optimal Control: 1-Norm and∞-Norm 3.1 Problem Formulation

Problem Formulation

Piece-wise linear cost function

J0(x(0), U0) := ‖PxN‖p +
N−1∑
k=0
‖Qxk‖p + ‖Ruk‖p (4)

with p = 1 or p =∞, P, Q, R full column rank matrices

Constrained Finite Time Optimal Control Problem (CFTOC)

J ∗0 (x(0)) = min
U0

J0(x(0), U0)
subj. to xk+1 = Axk + Buk , k = 0, . . . , N − 1

xk ∈ X , uk ∈ U , k = 0, . . . , N − 1
xN ∈ Xf
x0 = x(0)

(5)

N is the time horizon and X , U , Xf are polyhedral regions.
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3 3. Constrained Optimal Control: 1-Norm and∞-Norm 3.2 Construction of the LP with substitution

Construction of the LP with substitution
Recall that the ∞−norm problem can be equivalently formulated as

min
z0

εx
0 + . . . + εx

N + εu
0 + . . . + εu

N−1

subj. to −1nεx
k ≤ ±Q

[
Akx0 +

k−1∑
j=0

AjBuk−1−j

]
,

−1rεx
N ≤ ±P

[
AN x0 +

N−1∑
j=0

AjBuN−1−j

]
,

−1mεu
k ≤ ±Ruk ,

Akx0 +
k−1∑
j=0

AjBuk−1−j ∈ X , uk ∈ U ,

AN x0 +
N−1∑
j=0

AjBuN−1−j ∈ Xf ,

k = 0, . . . , N − 1
x0 = x(0)

MPC Part II – CFTOC F. Borrelli, M. Morari, C. Jones - Spring Semester 2015 3-20

3 3. Constrained Optimal Control: 1-Norm and∞-Norm 3.2 Construction of the LP with substitution

Construction of the LP with substitution
The problem results in the following standard LP

min
z0

c′0z0

subj. to Ḡ0z0 ≤ w̄0 + S̄0x(0)

where z0 := {εx
0, . . . , εx

N , εu
0 , . . . , εu

N−1, u′0, . . . , u′N−1} ∈ Rs,
s , (m + 1)N + N + 1 and

Ḡ0 =
[

Gε 0
0 G0

]
, S̄0 =

[
Sε

S0

]
, w̄0 =

[
wε

w0

]

For a given x(0) U ∗0 can be obtained via an LP solver (the 1−norm case is
similar).
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1- /∞-Norm State Feedback Solution
Main Results

1 The Open loop optimal control function can be obtained by solving the
mp-LP problem and calculating z∗0 (x(0))

2 The component u∗0 = [0 . . . 0 Im 0 . . . 0]z∗0 (x(0)) of the multiparametric
solution has the form

u∗(0) = f0(x(0)), ∀x(0) ∈ X0,

f0 : Rn → Rm, is continuous and PieceWise Affine on Polyhedra

f0(x) = F i
0x + gi

0 if x ∈ CRi
0, i = 1, . . . , N r

0

3 The polyhedral sets CRi
0 = {x ∈ Rn|H i

0x ≤ K i
0}, i = 1, . . . , N r

0 are a
partition of the feasible polyhedron X0.

4 In case of multiple optimizers a PieceWise Affine control law exists.
5 The value function J ∗0 (x(0)) is convex and piecewise linear on polyhedra.
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1 1. Basic Ideas of Predictive Control

Infinite Time Constrained Optimal Control
(what we would like to solve)

J ∗0 (x(0)) = min
∞∑

k=0
q(xk , uk)

s.t. xk+1 = Axk + Buk , k = 0, . . . , N − 1
xk ∈ X , uk ∈ U , k = 0, . . . , N − 1
x0 = x(0)

Stage cost q(x, u) describes “cost” of being in state x and applying input u

Optimizing over a trajectory provides a tradeoff between short- and
long-term benefits of actions

We’ll see that such a control law has many beneficial properties...
... but we can’t compute it: there are an infinite number of variables
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1 1. Basic Ideas of Predictive Control

Receding Horizon Control
(what we can sometimes solve)

J ∗t (x(t)) = min
Ut

p(xt+N ) +
N−1∑
k=0

q(xt+k , ut+k)

subj. to xt+k+1 = Axt+k + But+k , k = 0, . . . , N − 1
xt+k ∈ X , ut+k ∈ U , k = 0, . . . , N − 1
xt+N ∈ Xf
xt = x(t)

(1)

where Ut = {ut , . . . , ut+N−1}.

Truncate after a finite horizon:
p(xt+N ) : Approximates the ‘tail’ of the cost
Xf : Approximates the ‘tail’ of the constraints
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1 1. Basic Ideas of Predictive Control

On-line Receding Horizon Control
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1 At each sampling time, solve a CFTOC.
2 Apply the optimal input only during [t, t + 1]
3 At t + 1 solve a CFTOC over a shifted horizon based on new state

measurements
4 The resultant controller is referred to as Receding Horizon Controller

(RHC) or Model Predictive Controller (MPC).
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1 1. Basic Ideas of Predictive Control

On-line Receding Horizon Control

1) MEASURE the state x(t) at time instance t
2) OBTAIN U ∗t (x(t)) by solving the optimization problem in (1)
3) IF U ∗t (x(t)) = ∅ THEN ‘problem infeasible’ STOP
4) APPLY the first element u∗t of U ∗t to the system
5) WAIT for the new sampling time t + 1, GOTO 1)

Note that, we need a constrained optimization solver for step 2).
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2 2. History of MPC

History of MPC

A. I. Propoi, 1963, “Use of linear programming methods for synthesizing
sampled-data automatic systems”, Automation and Remote Control.

J. Richalet et al., 1978 “Model predictive heuristic control- application to
industrial processes”. Automatica, 14:413-428.

known as IDCOM (Identification and Command)
impulse response model for the plant, linear in inputs or internal variables
(only stable plants)
quadratic performance objective over a finite prediction horizon
future plant output behavior specified by a reference trajectory
ad hoc input and output constraints
optimal inputs computed using a heuristic iterative algorithm, interpreted as
the dual of identification
controller was not a transfer function, hence called heuristic

MPC Part III – Feasibility and Stability F. Borrelli, C. Jones, M. Morari - Spring Semester 2015 2-6

2 2. History of MPC

History of MPC
1970s: Cutler suggested MPC in his PhD proposal at the University of
Houston in 1969 and introduced it later at Shell under the name Dynamic
Matrix Control. C. R. Cutler, B. L. Ramaker, 1979 “Dynamic matrix
control – a computer control algorithm”. AICHE National Meeting, Houston,
TX.

successful in the petro-chemical industry
linear step response model for the plant
quadratic performance objective over a finite prediction horizon
future plant output behavior specified by trying to follow the set-point as
closely as possible
input and output constraints included in the formulation
optimal inputs computed as the solution to a least–squares problem
ad hoc input and output constraints. Additional equation added online to
account for constraints. Hence a dynamic matrix in the least squares problem.

C. Cutler, A. Morshedi, J. Haydel, 1983. “An industrial perspective on
advanced control”. AICHE Annual Meeting, Washington, DC.

Standard QP problem formulated in order to systematically account for
constraints.
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2 2. History of MPC

History of MPC

Mid 1990s: extensive theoretical effort devoted to provide conditions for
guaranteeing feasibility and closed-loop stability
2000s: development of tractable robust MPC approaches; nonlinear and
hybrid MPC; MPC for very fast systems
2010s: stochastic MPC; distributed large-scale MPC; economic MPC

MPC Part III – Feasibility and Stability F. Borrelli, C. Jones, M. Morari - Spring Semester 2015 2-8

3 3. Receding Horizon Control Notation
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3 3. Receding Horizon Control Notation

RHC Notation

x(t + 1) = Ax(t) + Bu(t)
y(t) = Cx(t)

x(t) ∈ X , u(t) ∈ U , ∀t ≥ 0

The CFTOC Problem

J ∗t (x(t)) = min
Ut→t+N|t

p(xt+N |t) +
N−1∑
k=0

q(xt+k|t , ut+k|t)

subj. to xt+k+1|t = Axt+k|t + But+k|t , k = 0, . . . , N − 1
xt+k|t ∈ X , ut+k|t ∈ U , k = 0, . . . , N − 1
xt+N |t ∈ Xf
xt|t = x(t)

with Ut→t+N |t = {ut|t , . . . , ut+N−1|t}.
MPC Part III – Feasibility and Stability F. Borrelli, C. Jones, M. Morari - Spring Semester 2015 3-9

3 3. Receding Horizon Control Notation

RHC Notation

x(t) is the state of the system at time t.
xt+k|t is the state of the model at time t + k, predicted at time t obtained by
starting from the current state xt|t = x(t) and applying to the system model

xt+1|t = Axt|t + But|t

the input sequence ut|t , . . . , ut+k−1|t .
For instance, x3|1 represents the predicted state at time 3 when the prediction
is done at time t = 1 starting from the current state x(1). It is different, in
general, from x3|2 which is the predicted state at time 3 when the prediction
is done at time t = 2 starting from the current state x(2).
Similarly ut+k|t is read as “the input u at time t + k computed at time t”.

MPC Part III – Feasibility and Stability F. Borrelli, C. Jones, M. Morari - Spring Semester 2015 3-10



3 3. Receding Horizon Control Notation

RHC Notation

Let U ∗t→t+N |t = {u∗t|t , . . . , u∗t+N−1|t} be the optimal solution. The first
element of U ∗t→t+N |t is applied to system

u(t) = u∗t|t(x(t)).

The CFTOC problem is reformulated and solved at time t + 1, based on the
new state xt+1|t+1 = x(t + 1).

Receding horizon control law

ft(x(t)) = u∗t|t(x(t))

Closed loop system

x(t + 1) = Ax(t) + Bft(x(t)) , fcl(x(t)), t ≥ 0

MPC Part III – Feasibility and Stability F. Borrelli, C. Jones, M. Morari - Spring Semester 2015 3-11

3 3. Receding Horizon Control Notation

RHC Notation: Time-invariant Systems
As the system, the constraints and the cost function are time-invariant, the
solution ft(x(t)) becomes a time-invariant function of the initial state x(t). Thus,
we can simplify the notation as

J ∗0 (x(t)) = min
U0

p(xN ) +
N−1∑
k=0

q(xk , uk)

subj. to
xk+1 = Axk + Buk , k = 0, . . . , N − 1
xk ∈ X , uk ∈ U , k = 0, . . . , N − 1
xN ∈ Xf
x0 = x(t)

where U0 = {u0, . . . , uN−1}.

The control law and closed loop system are time-invariant as well, and we write
f0(x0) for ft(x(t)).

MPC Part III – Feasibility and Stability F. Borrelli, C. Jones, M. Morari - Spring Semester 2015 3-12



4 4. MPC Features
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4 4. MPC Features

MPC Features

Pros
Any model

linear
nonlinear
single/multivariable
time delays
constraints

Any objective:
sum of squared errors
sum of absolute errors (i.e.,
integral)
worst error over time
economic objective

Cons
Computationally demanding in
the general case
May or may not be stable
May or may not be feasible

MPC Part III – Feasibility and Stability F. Borrelli, C. Jones, M. Morari - Spring Semester 2015 4-13



4 4. MPC Features

Example: Cessna Citation Aircraft
Linearized continuous-time model:
(at altitude of 5000m and a speed of 128.2 m/sec)

ẋ =


−1.2822 0 0.98 0

0 0 1 0
−5.4293 0 −1.8366 0
−128.2 128.2 0 0

 x +


−0.3

0
−17

0

 u

y =
[
0 1 0 0
0 0 0 1

]
x

horizon

V

Pitch angle

Angle of attack

Input: elevator angle
States: x1: angle of attack, x2: pitch angle, x3: pitch rate, x4: altitude
Outputs: pitch angle and altitude
Constraints: elevator angle ±0.262rad (±15◦), elevator rate ±0.524rad
(±60◦), pitch angle ±0.349 (±39◦)

Open-loop response is unstable (open-loop poles: 0, 0, −1.5594± 2.29i)
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4 4. MPC Features

LQR and Linear MPC with Quadratic Cost

Quadratic cost
Linear system dynamics
Linear constraints on inputs and states

LQR

J∞(x(t)) = min
∞∑

k=0
xT

t Qxt + uT
k Ruk

s.t. xk+1 = Axk + Buk

x0 = x(t)

MPC

J ∗0 (x(t)) = min
U0

N−1∑
k=0

xk
TQxk + uk

TRuk

s.t. xk+1 = Axk + Buk

xk ∈ X , uk ∈ U
x0 = x(t)

Assume: Q = QT � 0, R = RT � 0

MPC Part III – Feasibility and Stability F. Borrelli, C. Jones, M. Morari - Spring Semester 2015 4-15



4 4. MPC Features

Example: LQR with saturation
Linear quadratic regulator with saturated inputs.

At time t = 0 the plane is flying with a deviation of
10m of the desired altitude, i.e. x0 = [0; 0; 0; 10]

Problem parameters:
Sampling time 0.25sec,
Q = I , R = 10
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Closed-loop system is
unstable
Applying LQR control
and saturating the
controller can lead to
instability!
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4 4. MPC Features

Example: MPC with Bound Constraints on Inputs
MPC controller with input constraints |ui | ≤ 0.262 Problem parameters:

Sampling time 0.25sec,
Q = I , R = 10, N = 10
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The MPC controller uses the
knowledge that the elevator
will saturate, but it does not
consider the rate constraints.

⇒ System does not
converge to desired
steady-state but to a
limit cycle
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4 4. MPC Features

Example: MPC with all Input Constraints
MPC controller with input constraints |ui | ≤ 0.262
and rate constraints |u̇i | ≤ 0.349
approximated by |uk − uk−1| ≤ 0.349Ts

Problem parameters:
Sampling time 0.25sec,
Q = I , R = 10, N = 10
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The MPC controller
considers all constraints on
the actuator

Closed-loop system is
stable
Efficient use of the
control authority
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4 4. MPC Features

Example: Inclusion of state constraints
MPC controller with input constraints |ui | ≤ 0.262
and rate constraints |u̇i | ≤ 0.349
approximated by |uk − uk−1| ≤ 0.349Ts

Problem parameters:
Sampling time 0.25sec,
Q = I , R = 10, N = 10
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Pitch angle -0.9, i.e. -50  

Increase step:
At time t = 0 the plane is
flying with a deviation of
100m of the desired altitude,
i.e. x0 = [0; 0; 0; 100]

Pitch angle too large
during transient
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4 4. MPC Features

Example: Inclusion of state constraints
MPC controller with input constraints |ui | ≤ 0.262
and rate constraints |u̇i | ≤ 0.349
approximated by |uk − uk−1| ≤ 0.349Ts

Problem parameters:
Sampling time 0.25sec,
Q = I , R = 10, N = 10

0 2 4 6 8 10
50

0

50

100

150

Al
tit

ud
e 

x 4 (m
)

Time (sec)
0 2 4 6 8 10

0.4

0.2

0

0.2

0.4

Pi
tc

h 
an

gl
e 

x 2 (r
ad

)
0 2 4 6 8 10

0.5

0

0.5

Time (sec)

El
ev

at
or

 a
ng

le
 u

 (r
ad

)

Constraint on pitch angle active
Add state constraints for
passenger comfort:

|x2| ≤ 0.349
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4 4. MPC Features

Example: Short horizon
MPC controller with input constraints |ui | ≤ 0.262
and rate constraints |u̇i | ≤ 0.349
approximated by |uk − uk−1| ≤ 0.349Ts

Problem parameters:
Sampling time 0.25sec,
Q = I , R = 10, N = 4
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Decrease in the prediction
horizon causes loss of the sta-
bility properties
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4 4. MPC Features

Example: Short horizon
MPC controller with input constraints |ui | ≤ 0.262
and rate constraints |u̇i | ≤ 0.349
approximated by |uk − uk−1| ≤ 0.349Ts

Problem parameters:
Sampling time 0.25sec,
Q = I , R = 10, N = 4
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Inclusion of terminal cost and
constraint provides stability
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5 5. Stability and Invariance of MPC

Loss of Feasibility and Stability

What can go wrong with “standard” MPC?
No feasibility guarantee, i.e., the MPC problem may not have a solution
No stability guarantee, i.e., trajectories may not converge to the origin
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5 5. Stability and Invariance of MPC

Example: Loss of feasibility - Double Integrator
Consider the double integrator x(t + 1) =

[
1 1
0 1

]
x(t) +

[
0
1

]
u(t)

y(t) =
[

1 0
]

x(t)

subject to the input constraints

−0.5 ≤ u(t) ≤ 0.5

and the state constraints [
−5
−5

]
≤ x(t) ≤

[
5
5

]
.

Compute a receding horizon controller with quadratic objective with

N = 3, P = Q =
[
1 0
0 1

]
, R = 10.
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5 5. Stability and Invariance of MPC

Example: Loss of feasibility - Double Integrator
The QP problem associated with the RHC is

H =
[ 13.50 −10.00 −0.50
−10.00 22.00 −10.00
−0.50 −10.00 31.50

]
, F =

[−10.50 10.00 −0.50
−20.50 10.00 9.50

]
, Y = [ 14.50 23.50

23.50 54.50 ]

G0 =



0.50 −1.00 0.50
−0.50 1.00 −0.50
−0.50 0.00 0.50
−0.50 0.00 −0.50
0.50 0.00 −0.50
0.50 0.00 0.50
−1.00 0.00 0.00
0.00 −1.00 0.00
1.00 0.00 0.00
0.00 1.00 0.00
0.00 0.00 −1.00
0.00 0.00 1.00
0.00 0.00 0.00
−0.50 0.00 0.50
0.00 0.00 0.00
0.50 0.00 −0.50
−0.50 0.00 0.50
0.50 0.00 −0.50
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00



, E0 =



0.50 0.50
−0.50 −0.50
0.50 0.50
−0.50 −0.50
−0.50 −0.50
0.50 0.50
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
1.00 1.00
−0.50 −0.50
−1.00 −1.00
0.50 0.50
−0.50 −1.50
0.50 1.50
1.00 0.00
0.00 1.00
−1.00 0.00
0.00 −1.00



, w0 =



0.50
0.50
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
0.50
0.50
5.00
5.00
5.00
5.00
0.50
0.50
5.00
5.00
5.00
5.00
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5 5. Stability and Invariance of MPC

Example: Loss of feasibility - Double Integrator
1) MEASURE the state x(t) at time instance t
2) OBTAIN U ∗0 (x(t)) by solving the optimization problem in (1)
3) IF U ∗0 (x(t)) = ∅ THEN ‘problem infeasible’ STOP
4) APPLY the first element u∗0 of U ∗0 to the system
5) WAIT for the new sampling time t + 1, GOTO 1)

−5 0 5
−5

0

5

 x
1

 x
2

Depending on initial condition, closed loop trajectory may lead to states for which
optimization problem is infeasible.
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5 5. Stability and Invariance of MPC

Example: Loss of feasibility - Double Integrator

−5 0 5
−5

0

5

 x
1

 x
2

Boxes (Circles) are initial points leading (not leading) to feasible closed-loop
trajectories
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5 5. Stability and Invariance of MPC

Example: Feasibility and stability are function of tuning

Unstable system x(t + 1) =
[
2 1
0 0.5

]
x(t) +

[
1
0

]
u(t)

Input constraints −1 ≤ u(t) ≤ 1

State constraints
[
−10
−10

]
≤ x(t) ≤

[
10
10

] Parameters: Q =
[
1 0
0 1

]

Investigate the stability properties for different horizons N and weights R by
solving the finite-horizon MPC problem in a receding horizon fashion...
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5 5. Stability and Invariance of MPC

Example: Feasibility and stability are function of tuning
1 R = 10, N = 2: all trajectories unstable.
2 R = 2, N = 3: some trajectories stable.
3 R = 1, N = 4: more stable trajectories.

* Initial points with convergent trajectories
◦ Initial points that diverge

�   
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Green lines denote the set of all feasible initial points. They depend on the horizon
N but not on the cost R =⇒ Parameters have complex effect and trajectories.
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5 5. Stability and Invariance of MPC

Summary: Feasibility and Stability

Problems originate from the use of a ‘short sighted’ strategy
⇒ Finite horizon causes deviation between the open-loop prediction and the

closed-loop system: Set of feasible 
initial states for 
open-loop 
prediction

Set of initial 
states leading to 
feasible closed-
loop trajectories
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x 2

−5 0 5
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0

5

x1

x 2

Open-loop 
predictions

Closed-loop 
trajectories

Ideally we would solve the MPC problem with an infinite horizon, but that is
computationally intractable
⇒ Design finite horizon problem such that it approximates the infinite horizon
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5 5. Stability and Invariance of MPC

Summary: Feasibility and Stability

Infinite-Horizon
If we solve the RHC problem for N =∞ (as done for LQR), then the open
loop trajectories are the same as the closed loop trajectories. Hence

If problem is feasible, the closed loop trajectories will be always feasible
If the cost is finite, then states and inputs will converge asymptotically to the
origin

Finite-Horizon
RHC is “short-sighted” strategy approximating infinite horizon controller. But

Feasibility. After some steps the finite horizon optimal control problem may
become infeasible. (Infeasibility occurs without disturbances and model
mismatch!)
Stability. The generated control inputs may not lead to trajectories that
converge to the origin.
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5 5. Stability and Invariance of MPC

Feasibility and stability in MPC - Solution

Main idea: Introduce terminal cost and constraints to explicitly ensure feasibility
and stability:

J ∗0 (x0) = min
U0

p(xN ) +
N−1∑
k=0

q(xk , uk) Terminal Cost

subj. to
xk+1 = Axk + Buk , k = 0, . . . , N − 1
xk ∈ X , uk ∈ U , k = 0, . . . , N − 1
xN ∈ Xf Terminal Constraint
x0 = x(t)

p(·) and Xf are chosen to mimic an infinite horizon.
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6 6. Feasibility and Stability
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6 6. Feasibility and Stability 6.1 Proof for Xf = 0

Feasibility and Stability of MPC: Proof

Main steps:
Prove recursive feasibility by showing the existence of a feasible control
sequence at all time instants when starting from a feasible initial point
Prove stability by showing that the optimal cost function is a Lyapunov
function

Two cases:
1 Terminal constraint at zero: xN = 0
2 Terminal constraint in some (convex) set: xN ∈ Xf

General notation:

J ∗0 (x0) = min
U0

p(xN )︸ ︷︷ ︸
terminal cost

+
N−1∑
i=0

q(xi , ui)︸ ︷︷ ︸
stage cost

Quadratic case: q(xi , ui) = xT
i Qxi + uT

i Rui , p(xN ) = xT
N PxN
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6 6. Feasibility and Stability 6.1 Proof for Xf = 0

Stability of MPC - Zero terminal state constraint
Terminal constraint: xN ∈ Xf = 0

Assume feasibility of x0 and let
{u∗0 , u∗1 , . . . , u∗N−1} be the optimal control
sequence computed at x0 and {x(0), x1, . . . , xN}
be the corresponding state trajectory
Apply u∗0 and let system evolve to x(1) = Ax0 + Bu∗0
At x(1) the control sequence
{u∗1 , u∗2 , . . . , u∗N−1, 0} is feasible (apply 0 control
input ⇒ xN+1 = 0)

⇒ Recursive feasibility 4

fe
a

sib
le
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et

⇒ J ∗0 (x) is a Lyapunov function → (Lyapunov) Stability 4
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6 6. Feasibility and Stability 6.1 Proof for Xf = 0

Stability of MPC - Zero terminal state constraint
Terminal constraint: xN ∈ Xf = 0
Goal: Show J ∗0 (x1) < J ∗0 (x0) ∀x0 6= 0

J ∗0 (x0) = p(xN )︸ ︷︷ ︸
=0

+
N−1∑
i=0

q(xi , u∗i )

J ∗0 (x1) ≤ J̃0(x1) =
N∑

i=1
q(xi , u∗i )

=
N−1∑
i=0

q(xi , u∗i )− q(x0, u∗0) + q(xN , uN )

= J ∗0 (x0)− q(x0, u∗0)︸ ︷︷ ︸
Subtract cost
at stage 0

+ q(0, 0)︸ ︷︷ ︸
=0, Add cost
for staying at 0

fe
a

sib
le

 s
et

⇒ J ∗0 (x) is a Lyapunov function → (Lyapunov) Stability 4
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6 6. Feasibility and Stability 6.1 Proof for Xf = 0

Example: Impact of Horizon with Zero Terminal Constraint

System dynamics:

xk+1 =
[
1.2 1
0 1

]
xk +

[
1

0.5

]
uk

Constraints:

X := {x | −50 ≤ x1 ≤ 50, −10 ≤ x2 ≤ 10} = {x | Axx ≤ bx }
U := {u | ‖u‖∞ ≤ 1} = {u | Auu ≤ bu }

Stage cost:

q(x, u) := x ′
[
1 0
0 1

]
x + uTu
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6 6. Feasibility and Stability 6.1 Proof for Xf = 0

Example: Impact of Horizon with Zero Terminal Constraint

Maximum !
Control-Invariant !
Set

−50 0 50
−10

−5

0

5

10

N = 5

N = 10

N = 20

The horizon can have a strong impact on the region of attraction.
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6 6. Feasibility and Stability 6.2 General Terminal Sets
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6 6. Feasibility and Stability 6.2 General Terminal Sets

Extension to More General Terminal Sets
Problem: The terminal constraint xN = 0 reduces the size of the feasible set
Goal: Use convex set Xf to increase the region of attraction

−6 −4 −2 0 2 4 6
−3

−2

−1

0

1

2

3

x1

x 2

Feasible set for xN= 0  


Feasible set for xN ∈ X�   


X�

Double integrator

x(t + 1) =
[
1 1
0 1

]
x(t) +

[
0
1

]
u(t)[

−5
−5

]
≤ x(t) ≤

[
5
5

]
−0.5 ≤ u(t) ≤ 0.5

N = 5, Q =
[
1 0
0 1

]
, R = 10

Goal: Generalize proof to the constraint xN ∈ Xf
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6 6. Feasibility and Stability 6.2 General Terminal Sets

Invariant sets
Definition: Invariant set
A set O is called positively invariant for system x(t + 1) = fcl(x(t)), if

x(0) ∈ O ⇒ x(t) ∈ O, ∀t ∈ N+

The positively invariant set that contains every closed positively invariant set is
called the maximal positively invariant set O∞.

Invariant
! Recursively
     feasible

O1

Infeasible after 
one step

Infeasible after 
two steps
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6 6. Feasibility and Stability 6.2 General Terminal Sets

Stability of MPC - Main Result
Assumptions

1 Stage cost is positive definite, i.e. it is strictly positive and only zero at the
origin

2 Terminal set is invariant under the local control law v(xk):

xk+1 = Axk + Bv(xk) ∈ Xf , for all xk ∈ Xf

All state and input constraints are satisfied in Xf :

Xf ⊆ X , v(xk) ∈ U , for all xk ∈ Xf

3 Terminal cost is a continuous Lyapunov function in the terminal set Xf and
satisfies:

p(xk+1)− p(xk) ≤ −q(xk , v(xk)), for all xk ∈ Xf
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6 6. Feasibility and Stability 6.2 General Terminal Sets

Under those 3 assumptions:

Theorem
The closed-loop system under the MPC control law u∗0(x) is asymptotically stable
and the set Xf is positive invariant for the system x(k + 1) = Ax + Bu∗0(x).

MPC Part III – Feasibility and Stability F. Borrelli, C. Jones, M. Morari - Spring Semester 2015 6-39

6 6. Feasibility and Stability 6.2 General Terminal Sets

Stability of MPC - Outline of the Proof

Assume feasibility of x(0) and let
{u∗0 , u∗1 , . . . , u∗N−1} be the optimal control
sequence computed at x(0) and {x(0), x1, . . . , xN}
the corresponding state trajectory

At x(1), {u∗1 , u∗2 , . . . , v(xN )} is feasible:
xN is in Xf → v(xN ) is feasible

and xN+1 = AxN + Bv(xN ) in Xf

⇒ Terminal constraint provides recursive feasibility

fe
a

sib
le

 s
et
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6 6. Feasibility and Stability 6.2 General Terminal Sets

Asymptotic Stability of MPC - Outline of the Proof
J ∗0 (x0) =

N−1∑
i=0

q(xi , u∗i ) + p(xN )

Feasible, sub-optimal sequence for x1 : {u∗1 , u∗2 , . . . , v(xN )}

J ∗0 (x1) ≤
N∑

i=1
q(xi , u∗i ) + p(AxN + Bv(xN ))

=
N−1∑
i=0

q(xi , u∗i ) + p(xN )− q(x0, u∗0) + p(AxN + Bv(xN ))

− p(xN ) + q(xN , v(xN ))
= J ∗0 (x0)− q(x0, u∗0) + p(AxN + Bv(xN ))− p(xN ) + q(xN , v(xN ))︸ ︷︷ ︸

p(x)≤0

=⇒ J ∗0 (x1)− J ∗0 (x0) ≤ −q(x0, u∗0), q > 0

J ∗0 (x) is a Lyapunov function decreasing along the closed loop trajectories
⇒ The closed-loop system under the MPC control law is asymptotically stable

MPC Part III – Feasibility and Stability F. Borrelli, C. Jones, M. Morari - Spring Semester 2015 6-41



6 6. Feasibility and Stability 6.2 General Terminal Sets

Choice of Terminal Sets and Cost - Linear System,
Quadratic Cost

J ∗0 (x0) = min
U0

x ′N PxN +
N−1∑
k=0

x ′kQxk + u′kRuk Terminal Cost

subj. to
xk+1 = Axk + Buk , k = 0, . . . , N − 1
xk ∈ X , uk ∈ U , k = 0, . . . , N − 1
xN ∈ Xf Terminal Constraint
x0 = x(t)
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6 6. Feasibility and Stability 6.2 General Terminal Sets

Choice of Terminal Sets and Cost - Linear System,
Quadratic Cost

Design unconstrained LQR control law

F∞ = −(B′P∞B + R)−1B′P∞

where P∞ is the solution to the discrete-time algebraic Riccati equation:

P∞ = A′P∞A + Q −A′P∞B(B′P∞B + R)−1B′P∞A

Choose the terminal weight P = P∞
Choose the terminal set Xf to be the maximum invariant set for the
closed-loop system xk+1 = (A + BF∞)xk :

xk+1 = Axk + BF∞(xk) ∈ Xf , for all xk ∈ Xf

All state and input constraints are satisfied in Xf :

Xf ⊆ X , F∞xk ∈ U , for all xk ∈ Xf
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6 6. Feasibility and Stability 6.2 General Terminal Sets

Choice of Terminal Sets and Cost - Linear System,
Quadratic Cost

1 The stage cost is a positive definite function

2 By construction the terminal set is invariant under the local control law
v = F∞x

3 Terminal cost is a continuous Lyapunov function in the terminal set Xf and
satisfies:

x ′k+1Pxk+1 − x ′kPxk =x ′k(−P∞ + A′P∞A−A′P∞B(B′P∞B + R)−1B′P∞A)xk

= −x ′kQxk

All the Assumptions of the Feasibility and Stability Theorem are verified.
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6 6. Feasibility and Stability 6.2 General Terminal Sets

Example: Unstable Linear System

System dynamics:

xk+1 =
[
1.2 1
0 1

]
xk +

[
1

0.5

]
uk

Constraints:

X := {x | −50 ≤ x1 ≤ 50, −10 ≤ x2 ≤ 10} = {x | Axx ≤ bx }
U := {u | ‖u‖∞ ≤ 1} = {u | Auu ≤ bu }

Stage cost:

q(x, u) := x ′
[
1 0
0 1

]
x + uTu

Horizon: N = 10
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6 6. Feasibility and Stability 6.2 General Terminal Sets

Example: Designing MPC Problem
1 Compute the optimal LQR controller and cost matrices: F∞, P∞
2 Compute the maximal invariant set Xf for the closed-loop linear system

xk+1 = (A + BF∞)xk subject to the constraints

Xcl :=
{

x
∣∣∣∣ [ Ax

AuF∞

]
x ≤

[
bx
bu

]}

−50 0 50
−10

−5

0

5

10
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6 6. Feasibility and Stability 6.2 General Terminal Sets

Example: Closed-loop behaviour
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6 6. Feasibility and Stability 6.2 General Terminal Sets

Example: Lyapunov Decrease of Optimal Cost
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6 6. Feasibility and Stability 6.2 General Terminal Sets

Stability of MPC - Remarks

The terminal set Xf and the terminal cost ensure recursive feasibility and
stability of the closed-loop system.
But: the terminal constraint reduces the region of attraction.
(Can extend the horizon to a sufficiently large value to increase the region)

Are terminal sets used in practice?
Generally not...

Not well understood by practitioners
Requires advanced tools to compute (polyhedral computation or LMI)

Reduces region of attraction
A ‘real’ controller must provide some input in every circumstance

Often unnecessary
Stable system, long horizon → will be stable and feasible in a (large)
neighbourhood of the origin
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6 6. Feasibility and Stability 6.2 General Terminal Sets

Choice of Terminal Set and Cost: Summary

Terminal constraint provides a sufficient condition for stability

Region of attraction without terminal constraint may be larger than for MPC
with terminal constraint but characterization of region of attraction extremely
difficult

Xf = 0 simplest choice but small region of attaction for small N

Solution for linear systems with quadratic cost

In practice: Enlarge horizon and check stability by sampling

With larger horizon length N , region of attraction approaches maximum
control invariant set
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6 6. Feasibility and Stability 6.3 Example
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6 6. Feasibility and Stability 6.3 Example

Example: Short horizon
MPC controller with input constraints |ui | ≤ 0.262
and rate constraints |u̇i | ≤ 0.349
approximated by |uk − uk−1| ≤ 0.349Ts

Problem parameters:
Sampling time 0.25sec,
Q = I , R = 10, N = 4
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horizon causes loss of the sta-
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6 6. Feasibility and Stability 6.3 Example

Summary

Finite-horizon MPC may not be stable!

Finite-horizon MPC may not satisfy constraints for all time!

An infinite-horizon provides stability and invariance.

We ‘fake’ infinite-horizon by forcing the final state to be in an invariant set
for which there exists an invariance-inducing controller, whose infinite-horizon
cost can be expressed in closed-form.

These ideas extend to non-linear systems, but the sets are difficult to
compute.

MPC Part III – Feasibility and Stability F. Borrelli, C. Jones, M. Morari - Spring Semester 2015 6-53

7 7. Extension to Nonlinear MPC
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7 7. Extension to Nonlinear MPC

Extension to Nonlinear MPC

Consider the nonlinear system dynamics: x(t + 1) = g(x(t), u(t))

J ∗0 (x(t)) = min
U0

p(xN ) +
N−1∑
k=0

q(xk , uk)

subj. to xk+1 = g(xk , uk), k = 0, . . . , N − 1
xk ∈ X , uk ∈ U , k = 0, . . . , N − 1
xN ∈ Xf
x0 = x(t)

Presented assumptions on the terminal set and cost did not rely on linearity
Lyapunov stability is a general framework to analyze stability of nonlinear
dynamic systems

→ Results can be directly extended to nonlinear systems.
However, computing the sets Xf and function p can be very difficult!
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