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Module 9 Outline

We discuss the following topics in this module:
1 Decentralized control: intro and definition

2 Applications of decentralized control

3 Decentralized control + NCSs = DNCS

4 Observer-based decentralized control (OBDC) architecture

5 OBDC + networked control

6 Time-delay modeling and bound-derivation

7 Stability analysis + examples
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Introduction to Decentralized Control?

Decentralized control (DC): used when there is a large scale system (LSS)
whose subsystems have interconnections

Constrained DC: existing constraints on data transfer between subsystems

Unlike centralized control, DC can be robust and scalable

Even more robust for systems that are distributed over a large
geographical area

DC algorithms use only local information to produce control laws
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Why Decentralized Control?

Decentralized Control: utilization of local information to achieve global results

Replaces centralized control: the orthodox concept of high performance
system driven by a central computer has become obsolete

Very viable and efficient for large-scale interconnected systems

Examples: transportation systems, communication networks, power
systems, economic systems, manufacturing processes

Emerging synonyms from decentralized control: subsystems, distributed
computing, neural networks, parallel processing, etc...

DC connects graph theory with control & optimization theory

Very active research area, overkill?
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Centralized vs. Decentralized Control

Centralized Control
One system, one control, simple framework

Classical control, rich history

Pros: so much theory ⇒ so much methods to use

Cons:

1. Expensive, difficulty to transmit all control output to all actuators at the
same time

2. Hard to send all data from sensors to controllers at the same time, for
short sampling periods

3. Computationally inefficient for MIMO LSSs
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Centralized vs. Decentralized Control

Decentralized Control
One (or many) system(s), many controls, working in parallel

Classical control, rich history

Pros: easier communication, efficient computations

Cons: more vulnerable to communication networks, network’s limitations
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DC Motivating Example — Vehicle Spacing [Swigart & Lall, 2010]

N vehicles in a line, with vehicle i located at position qi

Each vehicle is displaced a distance xi from its original position

Each vehicle has sensors measuring the relative displacements of its
neighbors plus noise

– Example: y1 =
[

x1
x2 − x1

]
+
[
w1
w2

]
, y2 =

[
x2 − x1
x3 − x2

]
+
[
w3
w4

]
, etc...

– System dynamics for each car: ẋi = fi(xi, ui, wi, t), ∀i

– How can we design decentralized, local control actions, ui, such that a
certain spacing is maintained?

– Difference between a global control signal and local one
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DC Motivating Example (Cont’d)

Vehicles can communicate with other vehicles their sensor data:

1. Every vehicle receives the output of every sensor

2. Every vehicle sees only its own sensor data

3. Each vehicle i receives the sensor data of vehicles i− 1, i, and i+ 1

Information structure 1. would be considered centralized

2. and 3. patterns are decentralized: local controls and data exchanged

Potential control objectives:

(a) Is there a strategy that will restore unit spacing between the vehicles?

(b) If not, Is a strategy which minimizes mean square relative position error?

E
N−1∑
i=1

(xi+1 − xi)2

(c) Can we trade-off position error with the mean square distance traveled?

E
N−1∑
i=1

(xi+1 − xi)2 + λ · E
N−1∑
i=1

u2
i
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Decentralized Networked Control Systems — Why?

In many DC applications, data exchanged locally is transmitted through
communication networks

However, it’s common to ignore the effect that networks might have on
decentralized control strategies

Hence, studying network effect is very important

Why?

– Perturbations caused to exchanged data can influence the decentralized
control strategy

– Privacy issues

– Time-delays can lead to asynchrony in control actions (think of the
moving cars example)
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So, what now? DNCS System Description

Module plan:
1 Study a generic decentralized control law for dynamical systems
2 Understand the solution of such DC law
3 Insert a communication network
4 Map DC to NCSs
5 Study system description and dynamics
6 Analyze effect of time-delays and perturbations on DNCSs
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Decentralized Netwokred Control Systems — Example

Decentralized Control + Networked Control
= Decentralized Networked Control System (DNCS)
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Outline

1 Review an OBDC design for non-networked systems

2 Derive dynamics of the OBDC with a network

3 Map the DNCS formation to a typical NCS setup

4 Time-delay analysis of the the DNCS

5 Stability Analysis – Bounds on the time-delay

6 Numerical Results
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Observer-Based Decentralized Control (OBDC)

Different decentralized control strategies have been developed

An important class of DC architectures is Observer-Based Decentralized
Control (OBDC)

Basic idea: develop decentralized state-observers that use local
information and define a control law based on the estimate

OBDC helps in reducing the number of sensors needed for estimation &
control
Authors in [Ha & Trinh, 2004] developed an OBDC for multi-agent
systems such that:

– No information transfer between controllers is required

– Under certain conditions, closed-loop system is stable

– Observer’s order can be arbitrarily selected
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OBDC Plant Dynamics & Objective

Large-scale system where the plant dynamics are described as follow: ẋ = Ax+
N∑
i=1

Biui

yi = Cix, i = 1, 2, . . . , N{
u =

[
u>1 . . . u>N

]> , y =
[
y>1 . . . y>N

]>
B =

[
B1 . . . BN

]
, C =

[
C>1 . . . C>N

]>
.

N local control stations & no information flow between controllers

Then the plant can be written in the following compact form:

ẋ = Ax+Bu

y = Cx

OBDC Objective
Design N local decentralized controllers to generate local control laws for
all subsystems, given that we do not have access to the full plant-state.
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OBDC Design

Authors in [Ha & Trinh, 2004] proposed the following controller:
u1
u2
...
uN

 = −


F1
F2
...
FN

x
Then, ui = −Fix, ∀i = 1, . . . , N

* Since x is not available, let Fi = KiLi +WiCi, then

ui = −Fix = −(KiLi +WiCi)x ≈ −Kizi −Wiyi

* If zi → Lix, then above equation is valid

Let zi have the following dynamics:

żi = Eizi + LiBiui +Giyi

* Design objective: find Ei, Li, Gi,Wi,Ki such that:

1. Estimation error converges to zero

2. Local control actions stabilize the system
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OBDC Design (Cont’d)

żi = Eizi + LiBiui +Giyi

The observation error: eoi = zi − Lix, i = 1, 2, . . . , N

Plant dynamics with control ui:

ẋ = Ax+Biui +Briuri

* uri contains (N − 1) inputs of the remaining (N − 1) subsystems

Hence, we can write the observation error dynamics as:

ėoi = żi − Liẋ
= Eizi + LiBiui +Giyi − Li (Ax+Biui +Briuri )
= Eizi + LiBiui +GiCix− Li (Ax+Biui +Briuri )

+EiLix− EiLix
ėoi = Eieoi + (GiCi − LiA+ EiLi)x− LiBriur

We want to find design parameters Ki, Li, Gi,Wi such that eoi → 0

How?
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OBDC Design — Matrix Equations

ėoi = Eieoi + (GiCi − LiA+ EiLi)x− LiBriur

We want to find design parameters Ki, Li, Gi,Wi such that eoi → 0

How? Set unwanted terms in the above equations to zero and obtain
matrix equations

Precisely:
LiBri = 0

KiLi +WiCi = Fi

GiCi − LiA+ EiLi = 0
How can we solve the above nonlinear system of matrix-equations?
Kronecker Products

Assumptions:
1. (A,B,C) is controllable and observable

2. (A,Bi, Ci) are stabilizable and detectable

3. Global state feedback control u = −Fx exists, Fi is given
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Kronecker Products — A Quick Intro (Thanks Wiki )

If A ∈ Rm×n, B ∈ Rp×q, then A⊗B is mp× nq block matrix:

A⊗B =

a11B · · · a1nB
...

. . .
...

am1B · · · amnB

 ,
Precisely:

A⊗B =



a11b11 a11b12 · · · a11b1q · · · · · · a1nb11 a1nb12 · · · a1nb1q
a11b21 a11b22 · · · a11b2q · · · · · · a1nb21 a1nb22 · · · a1nb2q

...
...

. . .
...

...
...

. . .
...

a11bp1 a11bp2 · · · a11bpq · · · · · · a1nbp1 a1nbp2 · · · a1nbpq
...

...
...

. . .
...

...
...

...
...

...
. . .

...
...

...
am1b11 am1b12 · · · am1b1q · · · · · · amnb11 amnb12 · · · amnb1q
am1b21 am1b22 · · · am1b2q · · · · · · amnb21 amnb22 · · · amnb2q

...
...

. . .
...

...
...

. . .
...

am1bp1 am1bp2 · · · am1bpq · · · · · · amnbp1 amnbp2 · · · amnbpq
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Properties of Kronecker Products

Some useful properties:

A⊗ (B + C) = A⊗B +A⊗ C
(A+B)⊗ C = A⊗ C +B ⊗ C

(kA)⊗B = A⊗ (kB) = k(A⊗B)
(A⊗B)⊗ C = A⊗ (B ⊗ C)

(A⊗B)(C ⊗D) = (AC)⊗ (BD)
(A⊗B)T = AT ⊗BT

(A⊗B)∗ = A∗ ⊗B∗

Solve for matrix X if AXB = C using ⊗ product:

(BT ⊗A) vec(X) = vec(AXB) = vec(C)

* vec(X) denotes the vectorization of the matrix X formed by stacking the
columns of X into a single column vector

* AX + Y B = C ⇔ (I ⊗A) vec(X) + (B> ⊗ I) vec(Y ) = vec(C)
Important property if A,B are square matrices of sizes m and n:

A⊗B = (In ⊗A) + (B ⊗ Im)
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Back to the OBDC Design Problem

Solve the following system of matrix equations

LiBri = 0 ⇒ Li =
(

Null(B>ri
)
)>

KiLi +WiCi = Fi

GiCi − LiA+ EiLi = 0

The second equation can be written as (see ⊗ properties):

(L>i ⊗ Imi ) vec(Ki) + (C>i ⊗ Imi ) vec(Wi) = vec(Fi) (∗)

Also, third equation has only one unknown now, GiCi

(C>i ⊗ Ioi ) vec(Gi) = vec(LiA− EiLi) = vec(Vi) (∗∗)

Combining (∗) and (∗∗), we get:[
L>i ⊗ Imi C>i ⊗ Imi 0

0 0 C>i ⊗ Ioi

]
︸ ︷︷ ︸

Ψ

[vec(Ki)
vec(Wi)
vec(Gi)

]
=
[

vec(Fi)
vec(Vi)

]

Hence, we can find Ki,Wi, Gi, as LHS and RHS are both given
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Involving the Network

Given: a communication network exists between local controllers and
plants

Hence, instead of OBDC, we have an OBDC-NCS, or a DNCS

First, can we map the overall system dynamics to a typical NCS dynamics?

If yes, can we analyze the stability of NCS (that includes the OBDC
architecture)?

What is a bound the maximum allowable time-delay due to the network?

First, we start by constructing a mapping between DNCS dynamics and
NCS ones
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Mapping the DNCS to NCS Setup

Plant Dynamics: {
ẋp = Apxp +Bpû
y = Cpxp +Dpû,

(1)

Controller Dynamics: {
ẋc = Acxc +Bcŷ
u = Ccxc +Dcŷ,

(2)

Given the OBDC parameters (E,L,K,W,G), find (Ac, Bc, Cc, Dc)
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DNCS — Problem Formulation

The communication network effect can be modeled as
– Pure-time delay:

ŷ = y(t− τ), û1 = u1(t− τ)

– Signals perturbation:

ey = y − ŷ, eu1 = u1 − û1

Network perturbation effect in [Elmahdi et al., 2015]

Under unknown inputs, we addressed the time delay + perturbation
problem in [Taha et al., 2015]

This module, we study the network effect as time-delay for LTI NCSs
without unknown inputs — simpler case than the one in [Taha et al., 2015]

Research Question: how can we design an observer-based controller for
NCSs such that the closed-loop stability is guaranteed?
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Time-Delay Analysis for DNCS

We now convert the DNCS setup to the general setup of the NCS

The controller’s output (u(t)) and input (ŷ(t)) are defined as:

u(t) = Ccxc(t) +DcCpxp(t− τ)
ŷ(t) = y(t− τ) = Cpxp(t− τ)

Hence, plant & controller state dynamics can be written as:

ẋp(t) = Apxp(t) +BpCcxc(t) +BpDcCpxp(t− τ)
ẋc(t) = Acxc(t) +BcCpxp(t− τ)

We use the following Taylor series expansion for x(t− τ):

x(t− τ) =
∞∑
n=0

(−1)n τ
n

n! x
(n)(t),

where x(t) =
[
xp(t)> xc(t)>

]>
Study closed-loop system stability? Derive augmented dynamics of x(t)

Recall that given the OBDC parameters (E,L,K,W,G), we can find
(Ac, Bc, Cc, Dc)
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Time-Delay System Dynamics Construction

Neglecting the higher order terms, we get an approximated expression of
ẋ(t) in terms of only x(t) and τ as follows:

x(t− τ) = x(t)− τ ẋ(t) + τ2

2 ẍ(t). (3)

Combining ẋp(t) and ẋc(t) to find ẋ(t),[
ẋp(t)
ẋc(t)

]
=
[
Ap BpCc
0 Ac

][
xp(t)
xc(t)

]
+
[
BpDcCp 0
BcCp 0

][
xp(t− τ)
xc(t− τ)

]
.

Let Γ0 =
[
Ap BpCc
0 Ac

]
and Γ1 =

[
BpDcCp 0
BcCp 0

]
We can write ẋ(t) as:

ẋ(t) = Γ0x(t) + Γ1x(t− τ) (4)

Taking the second derivative of xp(t) and xc(t):

ẍ(t) =
[
ẍp(t)
ẍc(t)

]
=
[
Apẋp(t) +BpCpẋc(t) +BpDcCpẋp(t− τ)

Acẋc(t) +BcCpẋp(t− τ)

]
©Ahmad F. Taha Module 09 — Decentralized Networked Control Systems 25 / 35



Decentralized Control + DNCS Observer-Based Decentralized Control DNCS Construction Time-Delay & NCS Stability Analysis Simulations Conclusions & Future Work References

Closed-Loop Augmented State Dynamics

xp(t− τ) is piecewise-constant because it changes value at transmission
times only, hence:

ẋp(t− τ) = ẋc(t− τ) = 0

Substituting the above approximation in ẍ(t), we get,
ẍ(t) = Γ0ẋ(t) (5)

After a series of algebraic manipulations, we get the closed-loop dynamics:

ẋ(t) = (I + τΓ1 −
τ2

2 Γ1Γ0)−1(Γ0 + Γ1)x(t)

ẋ(t) = Ω(τ, τ2)x(t)

where

Ω(τ, τ2) =
[
I + τBpDcCp − τ2

2 BpDcCpAp − τ
2

2 BpDcCpBpBc

τBcCp − τ2

2 BcCpAp I − τ2

2 BcCpBpBc

]−1

·[
Ap +BpDcCp BpBc

BcCp Ac

]
Sanity check: set τ = 0 (i.e., nullify the network effect), do we get the
dynamics of the non-networked OBDC? Yes, we do!
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DNCS Stability Analysis

We now have closed-loop dynamics of the system that can be analyzed
using traditional stability analysis techniques.

The key challenge is the quadratic presence of τ in the dynamics of the
system ⇒ couple research questions

Research Question 1: What is the upper bound on the time-delay τ that
would drive the system unstable?

The notion of instability here implies that the state-estimation fails to
track the actual state.

Research Question 2: What is the maximum allowable disturbance or
unknown input bound that guarantees an acceptable state-estimation?
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Main Result — Time-Delay Bound

By the design of the non-networked OBDC, the non-networked system

ẋ(t) = Γx(t) = (Γ0 + Γ1)x(t)

is asymptotically stable (eig(Γ) < 0)

For a Hurwitz Γ, we have P = P> � O, is the solution to the Lyapunov
matrix equation

Γ>P + PΓ = −2Q,

for a given Q = Q> � O

Theorem (Stability of Time-Delay Based NCSs)
If the network induced delay satisfies the following inequality,(

‖PΓ1Γ0Γ‖+ 2‖PΓ2
1Γ‖

)
τ2 +

(
−2‖PΓ1Γ‖

)
τ +

(
−2λmin(Q)

)
< 0

then then the observer-based networked control system is asymptotically stable.
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Numerical Results for the Non-Networked System

Consider a 4th order unstable plant with the following SS representation:{
ẋp(t) = Apxp(t) +Bpu(t)
yp(t) = Cpxp(t),

(6)

Ap =

[
1 2 3 −4
5 6 7 −8
9 10 11 −12
13 14 15 −16

]
, Bp =

[
1 0 0 1
1 1 −1 2
2 1 4 3
3 1 2 5

]
, Cp =


1 1 0 0
2 −1 1 0
0 0 0 1
0 1 0 0
0 0 1 0
0 0 0 1


First, we design the non-networked observer-based control

States trajectories for τ = 0 and random initial conditions

Stabilized state trajectories through the OBDC
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Time-delay Bound Testing Algorithm

We follow this algorithm to test the usefulness of the derived bound:

Algorithm 1 Time-Delay DNCS Design and Stability Analysis
1: Solve for the observer-based control parameters (K,L,G,W )

LiBri = 0
KiLi +WiCi = Fi

GiCi − LiA+ EiLi = 0,

2: Given Ap, Ac, Bp, Bc, Cp, Cc and Dc, compute Γ,Γ0,Γ1
3: Find a matrix P = P> � O, a solution to the Lyapunov matrix equation

Γ>P + PΓ = −2Q

4: Analyze the stability of the networked system:

ẋ(t) = Ω (τ, τ2)x(t) = (I + τΓ1 −
τ2

2
Γ1Γ0)−1(Γ0 + Γ1)x(t)

by varying the time-delay (τ)
5: Establish an experimental bound on τ that guarantees the stability of the DNCS
6: Compare the theoretical bound on τ given by the quadratic polynomial in Theorem 1

and the experimental one computed in Step 5

©Ahmad F. Taha Module 09 — Decentralized Networked Control Systems 30 / 35



Decentralized Control + DNCS Observer-Based Decentralized Control DNCS Construction Time-Delay & NCS Stability Analysis Simulations Conclusions & Future Work References

Numerical Results

After finding the parameters for the non-networked system, we apply
Algorithm 1.

Experimental bound: 0 < τ < τmax
exper = 0.231 sec

Evaluating the coefficients for the second degree bound polynomial for τ ,
we get the theoretical bound: 0 < τ < τmax

theor = 0.202 sec

The derived upper bound for the time-delay that guarantees the stability
of the NCS is not too conservative
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Significance of the Derived Bound on τ

So why is it important to compute the bound on τ?
The determination of an upper bound on τ is significantly important in
the design of a NCS so that a suitable sampling period is chosen

Traditionally, the sampling period h should satisfy: 0 < τ < τmax < h

When the time-delay is greater than the sampling period, the global
stability of the overall NCS can not be guaranteed

Can be applied to different kind of applications where communication
network is replaced with physical networks (supply-chain networks, air
traffic systems, transportation networks)

Derived bounds in the literature are very conservative!
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Future Work

The need to look at more applications for Observer-Based Control in
networked dynamical systems

Derivation of network delay and perturbation bounds would assist in the
design of controllers and observers

Example: state-feedback & OBDC gain matrices can be designed to
reduce the disturbance effects of unknown inputs & network-induced
perturbations

Fault detection and isolation techniques can be jointly analyzed under a
DNCS scheme

Optimal decentralized networked control problem for systems with
unknown inputs?
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Questions And Suggestions?

Thank You!
Please visit

engineering.utsa.edu/˜taha
IFF you want to know more ,

©Ahmad F. Taha Module 09 — Decentralized Networked Control Systems 34 / 35

engineering.utsa.edu/~taha


Decentralized Control + DNCS Observer-Based Decentralized Control DNCS Construction Time-Delay & NCS Stability Analysis Simulations Conclusions & Future Work References

References I

Elmahdi, A., Taha, A. F., Sun, D., & Panchal, J. H. (2015). Decentralized control framework and stability analysis for networked control
systems. ASME Journal of Dynamic Systems, Measurement, and Control , 137(5), 051006–051006–11.

Ha, Q. P., & Trinh, H. (2004). Observer-based control of multi-agent systems under decentralized information structure. International
journal of systems science, 35(12), 719–728.

Swigart, J., & Lall, S. (2010). Decentralized control. In A. Bemporad, M. Heemels, & M. Johansson (Eds.) Networked Control Systems,
vol. 406 of Lecture Notes in Control and Information Sciences, (pp. 179–201). Springer London.
URL http://dx.doi.org/10.1007/978-0-85729-033-5_6

Taha, A. F., Elmahdi, A., Panchal, J. H., & Sun, D. (2015). Unknown input observer design and analysis for networked control systems.
International Journal of Control , 88(5), 920–934.
URL http://dx.doi.org/10.1080/00207179.2014.985718

©Ahmad F. Taha Module 09 — Decentralized Networked Control Systems 35 / 35

http://dx.doi.org/10.1007/978-0-85729-033-5_6
http://dx.doi.org/10.1080/00207179.2014.985718

	Decentralized Control + DNCS
	Observer-Based Decentralized Control
	DNCS Construction
	Time-Delay & NCS Stability Analysis
	Simulations
	Conclusions & Future Work

