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Introduction and Objectives Dynamic Programming Discrete LQR + DP HJB Equation Continuous LQR for LTV Systems

Outline

In this Module, we discuss the following:

What is optimal control? How is it different than regular optimization?

A general optimal control problem

Dynamic programming & principle of optimality + example

HJB equation, PMP + example

LQR for LTV systems, important remarks + example
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Motivation & Intro

Functionals: mappings from a set of functions to real numbers

Often expressed as definite integrals involving functions

Calculus of variations: maximizing or minimizing functionals

Example: find a curve of shortest length connecting two points under
constraints

Optimal control: extension of calculus of variations — a mathematical
optimization method for deriving control policies

Pioneers: Pontryagin and Bellman
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Your Daily Optimal Control Problem

Optimal control: finding a control law s.t. an optimality criterion is
achieved

OCP: cost functional + differential equations + bounds on control &
state (constraints)

OC law: derived using Pontryagin’s maximum principle (a necessary
condition), or by solving the HJB equation (a sufficient condition)

Example: driving on a hilly road — how should the driver drive such that
traveling time is minimized?

Control: driving way (pedaling, steering, gearing)

Constraints: car & road dynamics, speed limits, fuel, ICs

Objective: minimize (tfinal − tinitial)
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Your Daily Drive — In Equations

Can we translate the optimal driving route to equations? Yes!

Your optimal drive problem can be, hypothetically, written as:

minimize J = Φ [ x(t0), t0, x(tf ), tf ] +
∫ tf

t0

L [ x(t), u(t), t ] d t︸ ︷︷ ︸
minimal cost-functional

subject to ẋ(t) = f [ x(t), u(t), t ]︸ ︷︷ ︸
state-space dynamics: your car dynamics

g [ x(t), u(t), t ] ≤ 0︸ ︷︷ ︸
algebraic constraints: the road-constraints, pedalling, steering, gearing

φ [ x(t0), t0, x(tf ), tf ]︸ ︷︷ ︸
final & initial speeds, location

= 0
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Principle of Optimality (PoO)

Principle of Optimality: optimal solution for a problem passes through
(x1, t1) ⇒ optimal solution starting at (x1, t1) must be continuation of
the same path

This paved the way to numerical solutions, such as dynamic programming
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Dynamic Programming

DP: solving a large-scale, complex problem by solving small-scale, less
complex subproblems

DP combines optimization + computer science methods, uses PoO

Example: travel from A to B with least cost (robot navigation or aircraft
path)

⇒

20 possible options, trying all would be so tedious

Strategy: start from B, and go backwards, invoking PoO
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Discrete LQR + DP

Many DP problems are solved numerically

Discrete LQR can be solved analytically

Objective: select optimal control inputs to minimize J :

min J = 1
2x
>
NHxN +

N−1∑
k=0

1
2
[
x>k Qkxk + u>k Rkuk

]︸ ︷︷ ︸
=g(xk,uk)

subject to xk+1 = Akxk +Bkuk

H = H>, Q = Q> � 0, R = R> � 0

Use DP to solve the LQR for LTV systems. How?

J∗k−1[xk−1] = min
uk−1

{g(xk−1, uk−1) + J∗k [xk]}

Start from k = N . What is J∗N [xN ]? Clearly, it is: J∗N [xN ] = 1
2x
>
NHxN
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Discrete LQR

J∗k−1[xk−1] = min
uN−1

{g(xk−1, uk−1) + J∗k [xk]}

We now know that J∗N [xN ] = 1
2x
>
NHxN ⇒

J∗N−1[xN−1] = min
uN−1

{g(xN−1, uN−1) + J∗N [xN ]}

= 1
2 min

uN−1

{
x>N−1QN−1xN−1 + u>N−1RN−1uN−1 + x>NHxN

}
From state-dynamics: xN = AN−1xN−1 +BN−1uN−1, thus:

J∗N−1[xN−1] = 1
2 min

uN−1
{x>N−1QN−1xN−1 + u>N−1RN−1uN−1

+(AN−1xN−1 +BN−1uN−1)>H(AN−1xN−1 +BN−1uN−1)}

Find optimal control by taking derivative of JN−1 with respect to uN−1:

∂J∗N−1

∂uN−1
= u>N−1RN−1 + (AN−1xN−1 +BN−1uN−1)>HBN−1 = 0
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Optimality Conditions

Optimality condition at step N − 1 yields:

(RN−1 +B>N−1HBN−1)u∗N−1 +B>N−1HAN−1xN−1 = 0

Therefore, candidate optimal u∗N−1 can be written as:

u∗N−1 = −
(
RN−1 +B>N−1HBN−1

)−1
B>N−1HAN−1︸ ︷︷ ︸

FN−1

xN−1

What is that? It’s simply an optimal, time-varying linear state
feedback!

Second order necessary condition are satisfied:

∂2J∗N−1

∂u2
N−1

= RN−1 +B>N−1HBN−1 � 0
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Discrete LTV LQR Solutions

u∗N−1 = −
(
RN−1 +B>N−1HBN−1

)−1
B>N−1HAN−1︸ ︷︷ ︸

FN−1

xN−1

Given this optimal control action at N − 1, what is the optimal cost? By
substitution,

J∗N−1[xN−1] = 1
2
{
x>N−1QN−1xN−1 + (u∗N−1)>RN−1u

∗
N−1 + x>NHxN

}
Therefore,

J∗N−1[xN−1] = 1
2x
>
N−1PN−1xN−1 , where

PN−1 = QN−1+F>N−1RN−1FN−1+(AN−1−BN−1FN−1)>H(AN−1−BN−1FN−1)

Since PN = H, then:

FN−1 =
(
RN−1 +B>N−1PNBN−1

)−1
B>N−1PNAN−1
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Discrete LTV LQR Algorithm

For k = N − 1→ 0:

1 PN = H

2 Fk =
(
Rk +B>k Pk+1Bk

)−1
B>k Pk+1Ak

3 Pk = Qk + F>k RkFk + (Ak −BkFk)>Pk+1(Ak −BkFk)
Remarks:

The optimal solution is a time-varying control law, for time-varying
A,B,Q,R

Result can be easily applied to LTI systems

Assumption that Rk � 0 can be relaxed

Pk and Fk can be computed offline — both independent on x and u

Can eliminate Fk
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DP Example + LQR

For this dynamical system,

xk+1 = buk, b 6= 0,

find u∗0, u∗1 such that J = (x2 − 1)2 + 2
1∑

k=0

u2
k is minimized.

In DP, we start from the terminal conditions

By definition, J∗(xk) ≡ optimal cost of transfer from xk to x2

We know that: J∗(x2) = (x2 − 1)2 = (bu1 − 1)2

J∗(x1) = min
u1

(2u2
1 + J∗(x2)) = min

u1
(2u2

1 + (bu1 − 1)2)

Setting ∂J∗(x1)
∂u1

= 4u1 + 2b(bu1 − 1) = 0→ u∗1 = b

b2 + 2

Similarly: J∗(x0) = minu0 (2u2
0 + J∗(x1)) = minu0 (2u2

0 + b

b2 + 2)

Therefore, u∗0 = 0
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HJB Equation

Previous approach is relatively easy for DT systems

But what if we want to consider closed-form, exact solutions for CT NL
ODEs?

minimize J = h (x(tf ), tf ) +
∫ tf

t0

g (x(t), u(t), t ) dt

subject to ẋ(t) = f (x, u, t ), x(t0) = xt0

Objective: find u∗(t), t0 ≤ t ≤ tf , such that the cost is minimized

Hamiltonian: H(x, u, λ∗(x, t), t) = g(x, u, t) + λ∗(x, t)f(x, u, t)
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HJB Equation and PMP

Value function, optimal cost-to-go: V (x, t) = min
u
J(x, u, t)

Value function properties:
1 Vx(x, t) = ∂V

∂x
= λ∗(x, t)

2 −Vt(x, t) = − ∂V
∂t

= min
u∈U
H(x, u, λ∗(x, t), t) =

(
∂H
∂x

)>
The HJB Equation:

−V ∗t (x, t) = −∂V
∂t

= min
u∈U
H(x, u, λ∗(x, t), t) =

(
∂H
∂x

)>
What is this? It’s a PDE.

Pontryagin’s Maximum Principle (PMP)
Optimal control u∗ must satisfy:

H(x∗(t), u∗(t), λ∗(x, t), t) ≤ H(x∗(t), u(t), λ∗(x, t), t), ∀u ∈ U , t ∈ [t0, tf ]
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HJB-Equation Example

Compute the optimal u∗(t) and x∗(t) for the following optimal control problem:

minimize
∫ 2

1

√
1 + u2(t) d t

subject to ẋ(t) = u(t), x(1) = 3, x(2) = 5

First, construct the Hamiltonian:
H(x, u, Jx, t) =

√
1 + u2(t) + λ(x, t)u(t)

Since there are no constraints on u(t), the optimal controller candidate is:

0 = ∂H
∂u

= λ(x, t) + u√
1 + u2

⇒ u∗(t) = λ(x, t)√
1− λ2(x, t)

HJB equation: −Vt(x, t) =
(
∂H
∂x

)>
= 0⇒ V (t, x) = v is constant

Therefore, u∗(t) = λ(x, t)√
1− λ2(x, t)

= λ√
1− λ2

= c is also constant

Since x(1) and x(2) are given, we can determine u∗(t) = c, as follows:
x(2) = x(1) +

∫ 2
1 c d τ ⇒ u∗(t) = c = 2, ⇒ x(t) = x(1) +

∫ t

1 2 d τ = 2t+ 1
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Continuous LTV, LQR

How about the continuous LQR?

minimize J = 1
2x
>
tf
Hxtf + 1

2

∫ tf

t0

[
x(t)>Q(t)x(t) + u(t)>R(t)u(t)

]
dt

subject to ẋ(t) = A(t)x(t) +B(t)u(t)
H = H>, Q = Q> � 0, R = R> � 0

Construct the Hamiltonian:
H(x, u, λ∗(x, t), t) = g(x, u, t) + λ∗(x, t)f(x, u, t)

= 1
2
[
x(t)>Q(t)x(t) + u(t)>R(t)u(t)

]
+ λ∗(x, t) [A(t)x(t) +B(t)u(t)]

Minimum of H w.r.t. u:
∂H
∂u

= u(t)>R(t)+λ∗(x, t)B(t) = 0⇒ u∗(t) = −R−1(t)B(t)>λ∗(x, t)>

Note that ∂
2H
∂u2 = R(t) � 0
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Optimal Control for LTV Systems

What do we have now? Optimal control law as a function of λ∗(x, t):

u∗(t) = −R−1(t)B(t)>λ∗(x, t)>

Write the Hamiltonian in terms of u∗(t) : H(x, u, λ∗(x, t), t) =
1
2

[
x(t)>Q(t)x(t) +

(
R−1(t)B(t)>λ∗(x, t)>

)>
R(t)

(
R−1(t)B(t)>λ∗(x, t)>

)]
+λ∗(x, t)

[
A(t)x(t) +B(t)R−1(t)B(t)>λ∗(x, t)>

]
= 1

2x(t)>Q(t)x(t)+λ∗(x, t)A(t)x(t)−1
2λ
∗(x, t)B(t)R−1(t)B>(t)λ∗(x, t)> (∗)

Consider a candidate VF: V ∗(x, t) = 1
2x
>(t)P (t)x(t), P (t) = P>(t)

Properties of VF (see previous slides):
1 V ∗x (x, t) = λ∗(x, t) = x>(t)P (t)1

2 V ∗t =
1
2
x>(t)Ṗ (t)x(t) = −min

u∈U
H(x, u, λ∗(x, t), t) = −(∗)

1The partial derivatives taken w.r.t. one variable assuming the other is fixed. Note that there are two independent variables in this
problem x and t: x is time-varying, but not a function of t.
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Solution for LTV, LQR

λ∗(x, t) = x>(t)P (t)

Substitute λ∗(x, t) into (∗):

= 1
2x(t)>Q(t)x(t)+x>(t)P (t)A(t)x(t)−1

2x
>(t)P (t)B(t)R−1(t)B(t)>P (t)x(t)

= 1
2x(t)>

(
Q(t) + P (t)A(t) +A>(t)P (t)− P (t)B(t)R−1(t)B(t)>P (t)

)
x(t) (∗∗)

But −V ∗t (x, t) = (∗) = (∗∗) = −1
2x
>(t)Ṗ (t)x(t)

Hence, for V ∗(x, t) = 1
2x
>(t)P (t)x(t) to be an optimal VF, we require:

1 −Ṗ (t) = Q(t) + P (t)A(t) +A>(t)P (t)− P (t)B(t)R−1(t)B(t)>P (t)

2 P (tf ) = H

3 1. and 2. generate a solution P (t) for a Differential Riccati Equation
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Remarks on LTV, LQR Solution

Recall that u∗(t) = −R−1(t)B(t)>λ∗(x, t)> = −R−1(t)B(t)>P (t)︸ ︷︷ ︸
=F (t)

x(t)

Hence, solution is (again) a time-varying, LSF control law

Real-time gains (K(t)) can be generated offline

What happens when tf →∞? Well...DRE saturates ⇒ Ṗ (t) = 0

Hence, we can solve the continuous algebraic Riccati equation (CARE):

Q+ PssA+A>Pss − PssBR
−1B>Pss = 0

CARE solves for P = P> � 0 — can we write this as an LMI? (it looks
like a bilateral matrix inequality, not an LMI, though)

Fact: If (A,B,C) are stabilizable and detectable ⇒ steady state solution
Pss approaches unique PSD CARE solution
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LTI, CT LQR Example

Find the optimal LSF controller, u = −Kx, that minimizes:

J =
∫ ∞

0
u2(t) dt, subject to ẋ(t) = x(t) + 2u(t), x(0) = 1.

From the previous slide, if tf =∞, we can solve CARE

For the given J and dynamics, we have: Q = 0, R = I, A = 1, B = 2

CARE (variable is P ∈ R1×1):

Q+ PA+A>P − PBR−1B>P = 0 + 1 · p+ p · 1− p2(2)(1)(2) = 0

Or: 2p− 4p2 = 0 ⇒ p = 1
2 , (p = 0 is not positive definite)

Thus, u∗(t) = −R−1B>Px(t) = −x(t)

Optimal cost: Jmin =
∫∞

0 (u∗(t))2 dt =
∫∞

0 x>(t)x(t) dt = x>0 Px0 = 1
2
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Questions And Suggestions?

Thank You!
Please visit

engineering.utsa.edu/˜taha
IFF you want to know more ,
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