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Outline

In this Module, we discuss the following:
@ What is optimal control? How is it different than regular optimization?
@ A general optimal control problem
@ Dynamic programming & principle of optimality + example
e HJB equation, PMP 4+ example

o LQR for LTV systems, important remarks + example
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Motivation & Intro

@ Functionals: mappings from a set of functions to real numbers
o Often expressed as definite integrals involving functions
o Calculus of variations: maximizing or minimizing functionals

o Example: find a curve of shortest length connecting two points under
constraints

o Optimal control: extension of calculus of variations — a mathematical
optimization method for deriving control policies

o Pioneers: Pontryagin and Bellman
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Your Daily Optimal Control Problem

Systems

@ Optimal control: finding a control law s.t. an optimality criterion is
achieved

@ OCP: cost functional + differential equations + bounds on control &
state (constraints)

@ OC law: derived using Pontryagin's maximum principle (a necessary
condition), or by solving the HJB equation (a sufficient condition)

@ Example: driving on a hilly road — how should the driver drive such that
traveling time is minimized?

@ Control: driving way (pedaling, steering, gearing)
o Constraints: car & road dynamics, speed limits, fuel, ICs

o Objective: minimize (tfinat — tinitial)
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Your Daily Drive — In Equations

@ Can we translate the optimal driving route to equations? Yes!

@ Your optimal drive problem can be, hypothetically, written as:

tr
minimize J = @[m(to),to,m(tf),tf]—l—/ Lz(t),u(t),t] dt

to

minimal cost-functional

subject to z(t) = fz(t),u(t),t]

state-space dynamics: your car dynamics

glxz(t),u(?),t] <0

algebraic constraints: the road-constraints, pedalling, steering, gearing

¢ [w(to),to,x(tf),tf] =0

final & initial speeds, location
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Principle of Optimality (PoO)

o Principle of Optimality: optimal solution for a problem passes through
(z1,t1) = optimal solution starting at (z1,¢1) must be continuation of
the same path

Terminal
Manifold of
acceptable
final solutions

Solution

(o, t0)

@ This paved the way to numerical solutions, such as dynamic programming
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ynamic Programming

o DP: solving a large-scale, complex problem by solving small-scale, less
complex subproblems

@ DP combines optimization + computer science methods, uses PoO

o Example: travel from A to B with least cost (robot navigation or aircraft
path)

@ 20 possible options, trying all would be so tedious

@ Strategy: start from B, and go backwards, invoking PoO
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Discrete LQR + DP

@ Many DP problems are solved numerically
o Discrete LQR can be solved analytically

o Objective: select optimal control inputs to minimize J:

N—1
. 1 1
min J = ixEHa:N + Z 5 [xZkak + uIRkuk]
k=0
=g(zk,uk)
subject to Tr+1 = Agxr + Bruk

H=H",Q=Q " =0,R=R" =0

@ Use DP to solve the LQR for LTV systems. How?

Ji—qlze—1] = min {g(zr—1,ur—1) + Ji[z]}

Uk —1

o Start from k = N. What is Ji[zn]? Clearly, it is: | Jy[zn] = %xLH:cN
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Jio1lrg—1] = min {g(zk—1,ur—1) + Ji [zx]}
UN-—1

o We now know that Ji[zn] = 2oy Hon =
JN_alzn-1] = min {g(zn_1,un—1) + Jx[zN]}
uUN_1

. T T T
=3 min {QUN—1QN719UN71 +un_1Ry-1un—1 +9UNHZL“N}
UN—1

o From state-dynamics: zny = Ay—12n-1 + BN—1un—_1, thus:

IN_ilzn—1] ==

. T T
min {zy_1QN-1ZN-1 + un_1 RN_1un—1
UN—1

+(An—12N-1 + Bn-1un—1) H(An—12n-1 + By—1un—-1)}

o Find optimal control by taking derivative of Jy_1 with respect to un_1
0JN_1 T T B
—— =unx_1Rv-1+ (AN—12N-1+ Bn-1un—1) HBn-1 =0
Oun—1
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Optimality Conditions

o Optimality condition at step N — 1 yields:

(Rnv-1+ B]-\FI—IHBNfl)U*N—l + By HAN 12n-1 =0

@ Therefore, candidate optimal uj_; can be written as:

. 1
UN_1 = — (RN—l + B£71HBN—1) BN HAN 12N

Fn_1

o What is that? It's simply an optimal, time-varying linear state
feedback!

@ Second order necessary condition are satisfied:

Iy

2 =Rn_1+ BN _1HBy_1 >0
No1
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Discrete LTV LQR Solutions

« -1
un-1=—(Rv-1+ By 1HBn-1) By 1 HAn-12n-

Fn-1

@ Given this optimal control action at N — 1, what is the optimal cost? By
substitution,

* 1 * *
In-ilen—1] = 3 {2511\—1_1QN71$N71 + (UN—1)TRN71UN_1 + ml-\er-TN}

@ Therefore,

* 1
IJn_ilen-1] = izr,T\;,lPN_lxN_l , Where

Py_1=QN-1+Fn_1Rv_1FN_1+(An—1—Bn—1Fn-1)  H(An—1—Bn_1Fn_1)

@ Since Py = H, then:

-1
Fy-1=(Rv-1+ By 1PvBy-1)  By_1PvAn—
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Discrete LTV LQR Algorithm

Fork=N—-1—0:
Q@ Pn=H
Q I, = (Rk +B;Pk+1Bk>_1 Byl Pet1Ak

9 Pk = Qk + FJRka + (Ak — Bka)TPk+l(Ak — Bka)
Remarks:

@ The optimal solution is a time-varying control law, for time-varying
A? B7 Q7 R

@ Result can be easily applied to LTI systems

Assumption that R > 0 can be relaxed

Py and F}; can be computed offline — both independent on = and u

@ Can eliminate F}
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DP Example + LQR

For this dynamical system,

Try1 = bug, b#0,

1
find uy, u} such that | J = (z2 —1)* + QZui is minimized.
k=0

@ In DP, we start from the terminal conditions
@ By definition, J*(xx) = optimal cost of transfer from zx to x2
o We know that: J*(x2) = (z2 — 1)% = (buy — 1)?
J (x1) = n;lln(2u% + J(z2)) = muiln(2uf + (buy —1)%)

8J* (.T1)
8U1

b

@ Setting )

:4u1+2b(bu171):0a fuff:

o Similarly: J* () = ming, (2u§ + J*(21)) = miny, (2ud +

@ Therefore,
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HJB Equation

@ Previous approach is relatively easy for DT systems

@ But what if we want to consider closed-form, exact solutions for CT NL
ODEs?
ty
minimize J = h(z(ty),ty)+ / g (z(t),u(t),t)dt
to
subject to z(t) = f(z,u,t), x(to) = x4,

Objective: find u*(t), to <t < ts, such that the cost is minimized

Hamiltonian: \ H(z,u, N (x,8), 1) = gla,u,t) + A\ (z, ) f(z, u, t)
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Systems

HJB Equation and PMP

@ Value function, optimal cost-to-go: | V(z,t) = min J(z,u,t)

@ Value function properties:

O Va(z,t) = G¥ = X (x,t)

BH)T

Q —Vi(z,t)= 9V min H(z, u, \*(z,t),t) = (8—
i

ot ueU

e The HJB Equation:

-
—V/ (2,t) = 7887‘1;/ = min H(z, u, A" (z,1),¢) = (%)

o What is this? It's a PDE.

Pontryagin’s Maximum Principle (PMP)

Optimal control ™ must satisfy:

‘ H(m*(t)a'LL*(t)a)‘*(xat)at) < H(m*(t)au@)a)‘*(mat)at)a Vuel, te [tovtf]

v
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HJB-Equation Example

Compute the optimal u*(¢) and z*(t) for the following optimal control problem:

minimize / V31+u?(t)dt
subject to z(t) = u(t), z(1)=3, z(2)=5

@ First, construct the Hamiltonian:
H(z,u, Jz,t) = /1 +u?(t) + Az, t)u(t
@ Since there are no constraints on u(t), the optimal controller candidate is:
oH U « Az, t)
0= =Nz, t) + — = = () = ———=
u @9 V1+u? ®) 1— A2(z,t)

_ oM\ T :

e HJB equation: —Vi(zx,t) = (87) =0= V(t,x) = v is constant
Az, t) _ A
V1= A (z,t)  VI=N
@ Since z(1) and z(2) are given, we can determine u*(t) = ¢, as follows:
z(2) =z(1) + ffc dr = u"(t)=c=2, = z(t) =2(1) + f1t2 dr=2t+1

@ Therefore, u*(t) = = cis also constant
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Continuous LTV, LQR

@ How about the continuous LQR?

minimize J = %xtTfotf +;/tof [z(t) " Q(t)z(t) + u(t) " R(t)u(t)] dt
subject to z(t) = A(t)z(t) + B(t)u(t)

H=H",Q=Q" =0,R=R" >0
@ Construct the Hamiltonian:
H(w,u, \*(z,1),t) = g(z,u,t) + X (2, ) f (2, u, 1)

= % [2(t) " Q(t)z(t) + u(t) " R(t)u(t)] + X" (=, 1) [A()=(t) + B(t)u(t)]

@ Minimum of H w.r.t. u:

%—Z =u(t) R()+A" (2, t)B(t) =0 = |[u"(t) = =R () B(t) " \*(z,t)
o Note that %2;[ = R(t) >0
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Optimal Control for LTV Systems

@ What do we have now? Optimal control law as a function of A*(z, t):

lu'()) = ~R (OB X (2.0) |

Discrete LQR DP HJB Equation

z,u, N (z,t),t) =

o Write the Hamiltonian in terms of u*(¢) : H
D) (R’l(t)B(t)T/\*(x,t)T)}

[x(t)TQ(t)x(t) + (R OBO N (@07 R
X (z,t) [A(W)z(t) + BO)R™ (£)B(t) " A" (z,8) "]
%x(t)TQ(t)x(t)—i—)\*(x,t)A(t)x(t)—%X*(m,t)B(t)R_l(t)BT(t)A*(m,t)T (+)

N =

o Consider a candidate VF: V*(x,t) = %xT(t)P(t)x(t)7 P(t) = PT(t)

@ Properties of VF (see previous slides):
0 Vi (z,t) =X (a,t) =a" ()P()"
ue

The partial derivatives taken w.r.t. one variable assuming the other is fixed. Note that there are two independent variables in this

problem @ and ¢:  is time-varying, but not a function of t.
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Solution for LTV, LQR

N(z,t) =z (t)P(t)
@ Substitute A*(z,t) into (x):

= %l’(t)TQ(t)x(t)JrrT(t)P(t)A(t)x(t)—le(t)P(t)B(t)R_l(t)B(t)TP(t)x(t)

= %m(t)T (Q(t) + P()A(t) + AT ()P(t) — P()B()R™ ' (t)B(t) ' P(t)) x(t) (xx)

o But —V*(z,t) = (%) = (xx) = —%xT(t)P(t)x(t)

o Hence, for V*(z,t) = 227 (t)P(t)z(t) to be an optimal VF, we require:

O | —P() = Q(t) + P()A(t) + AT (t)P(t) — P(t)B()R™' (1) B(t) " P(t)

Q P(ty)=H
© 1. and 2. generate a solution P(t) for a Differential Riccati Equation
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Remarks on LTV, LQR Solution

e Recall that u*(t) = =R () B(t) "\ (z,t) " = — R~ (¢)B(t) " P(t) z(t)
T

@ Hence, solution is (again) a time-varying, LSF control law

@ Real-time gains (K (¢)) can be generated offline

o What happens when t; — c0? Well...DRE saturates = P(t) =0

@ Hence, we can solve the continuous algebraic Riccati equation (CARE):

Q+PsA+ A" Py — P,,BR'B'P,, =0

o CARE solves for P = PT = 0 — can we write this as an LMI? (it looks
like a bilateral matrix inequality, not an LMI, though)

o Fact: If (A, B,C) are stabilizable and detectable = steady state solution
P; approaches unique PSD CARE solution
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LTI, CT LQR Example
Find the optimal LSF controller, w = — Kz, that minimizes:

J= /oo u?(t) dt, subject to @(t) = x(t) + 2u(t), =(0)=1.
0

From the previous slide, if ¢y = co, we can solve CARE

For the given J and dynamics, we have: Q =0, R=1,A=1,B=2
o CARE (variable is P € R**1):

Q+PA+A"P—PBR 'B'P=0+4+1-p+p-1-p*2)(1)(2) =0

Or: 2p—4p’ =0=p= % (p = 0 is not positive definite)

Thus, u*(t) = —R™'BT Px(t) = —x(t)

o Optimal cost: Jmin = fooo(u*(t))2 dt = fooo z' (t)x(t) dt = xg Pxo = =
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Questions And Suggestions?

Any questions?

Thank You!

Please visit
engineering.utsa.edu/~taha
IFF you want to know more ®
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