Module 04 - Optimization Problems KKT Conditions \& Solvers

Ahmad F. Taha

EE 5243: Introduction to Cyber-Physical Systems

Email: ahmad.taha@utsa.edu
Webpage: http://engineering.utsa.edu/~taha/index.html

September 14, 2015

In this module, we present basic mathematical optimization principles. The following topics are covered ${ }^{1}$:

- General introduction to optimization
- Convex optimization
- Linear programming, SDP
- Mixed-integer programming
- Relaxations
- KKT optimality conditions
- Optimization problems solvers

[^0]
Optimization - 1

Given a function to be minimized, $f(x), x \in \mathbb{R}^{n}$

- x_{0} is a global minimum of $f(x) \Rightarrow f\left(x_{0}\right) \leq f(x)$ for all x
- x_{0} is a local minimum of $f(x) \Rightarrow f\left(x_{0}\right) \leq f(x)$ for $\left\{x \in \mathbb{R}^{n} ;\left\|x-x_{0}\right\| \leq \epsilon, \epsilon>0\right\}$

Convexity:

- Function - $f(x)$ is convex if:

$$
f(\alpha x+(1-\alpha) y) \leq \alpha f(x)+(1-\alpha) f(y)
$$

for all $0 \leq \alpha \leq 1$

- Set $-\mathcal{X}$ is convex if $x, y \in \mathcal{X} \Rightarrow \alpha x+(1-\alpha) y \in \mathcal{X}$
- If $g(x)$ is convex, then $\mathcal{X}=\{x \mid g(x) \leq 0\}$ is convex

Convex Optimization Problem

$$
\begin{array}{rl}
\min _{x \in \mathbb{R}^{n}} & f(x) \\
\text { s.t. } & g_{i}(x) \leq 0, i=1, \ldots, m
\end{array}
$$

$f(x), g_{i}(x)$ are all convex \Rightarrow any local minimum is a global minimum

Examples of Convex Functions

Functions mapping $\mathbb{R} \rightarrow \mathbb{R}$:

- Affine $(a x+b)$, exponential $\left(e^{a x}\right)$
- Powers $\left(x^{a} ; a \geq 1, a \leq 0\right)$, powers of absolute value $\left(|x|^{p} ; p \geq 1\right)$

Functions mapping $\mathbb{R}^{n} \rightarrow \mathbb{R}$:

- Affine $\left(a^{\top} x+b\right)$
- Vector norms $\left(\|x\|_{p}=\left(\sum_{i=1}^{n}|x|^{p}\right)^{\frac{1}{p}}, p \geq 1\right)$

Functions mapping $\mathbb{R}^{n \times m} \rightarrow \mathbb{R}$:

- Affine $\left(f(X)=\operatorname{trace}\left(A^{\top} X\right)+b\right)$
- Matrix norms $\left(\|X\|_{2}=\sigma_{\max }(X)=\sqrt{\lambda_{\max }\left(X^{\top} X\right)}\right)$

Tractability \& Linear Programs

Computational tractability:

- Convex optimization: easy to solve, polynomial-time
- Nonconvex optimization: difficult to solve, NP-hard ${ }^{2}$

Linear programming:

- $f(x)=c^{T} x$
- Affine constraints: $g_{i}(x)=a_{i}^{T} x-b_{i}$ (usually as vector: $A x \leq b$)
- Easiest type of optimization
- Solvable in polynomial time
- Quadratic programming with $f(x)=x^{T} Q x$ is also easy if Q is symmetric positive semi-definite
- Is it convex? See next slide

[^1]
Convexity of a Quadratic Function

Solution:

- Given that $f(x)=x^{\top} Q x$, we apply the definition of convex function.

$$
\alpha f(x)+(1-\alpha) f(y)-f(\alpha x+(1-\alpha) y) \geq 0
$$

- Substituting for $f(x)$ into the LHS of the previous equation yields:

$$
\begin{gathered}
\alpha x^{\top} Q x+(1-\alpha) y^{\top} Q y-(\alpha x+(1-\alpha) y)^{\top} Q(\alpha x+(1-\alpha) y) \\
=\alpha(1-\alpha) x^{\top} Q x-2 \alpha(1-\alpha) x^{\top} Q y+\alpha(1-\alpha) y^{\top} Q y=\alpha(1-\alpha)(x-y)^{\top} Q(x-y)
\end{gathered}
$$

- Define $z=x-y \Rightarrow$

$$
\alpha(1-\alpha) z^{\top} Q z
$$

- Since $0 \leq \alpha \leq 1, Q=Q^{\top} \succeq$ and $\forall z \Rightarrow$

$$
\alpha(1-\alpha) z^{\top} Q z \geq 0
$$

Mixed-Integer Programming

MIP

$$
\begin{array}{ll}
\min _{x, y} & f(x, y) \\
\text { s.t. } & g_{i}(x, y) \leq 0, i=1, \ldots, m \\
& y_{i} \in \mathbb{Z} \quad \text { (the integers) }
\end{array}
$$

- NP-hard even when f and g_{i} are all linear
- $y_{i} \in \mathbb{Z}$ is nononvex
- Very common in CPS planning problems
- Even more relevant in smart grids: unit commitment problem, expansion models, ...

Semidefinite Programming

- Hermitian: $X=X^{*}$ (conjugate transpose), $X \in \mathbb{C}^{n \times n}$
- Definition: $z^{*} X z \geq 0$ for all $z \in \mathbb{R}^{n}$
- Equivalent: all eigs. of X nonnegative, all principal minors nonnegative
- Notation: $X \succeq 0$
- $X \succeq 0$ is convex constraint

Proof: Suppose $X, Y \succeq 0$. Then

$$
z^{*}(\alpha X+(1-\alpha) Y) z=\alpha z^{*} X z+(1-\alpha) z^{*} Y z \geq 0
$$

Semidefinite Programming - 2

Semidefinite Program (SDP)

$$
\begin{array}{ll}
\min _{X} & \operatorname{trace}(C X) \\
\text { s.t. } & \operatorname{trace}\left(A_{i} X\right)=b_{i}, X \succeq 0
\end{array}
$$

Semidefinite Program (SDP) - Form 2

$$
\min _{x} \quad c^{\top} x
$$

s.t. $\underbrace{F(x)=F_{0}+\sum_{i=1}^{n} F_{i} x_{i} \succeq 0}$

Linear Matrix Inequality (LMI), $F_{i}=F_{i}^{\top}$

- SDP: linear cost function, LMI constraints - Convex, 1 minimum
- Generalization of LP (don't solve LP as SDP)
- SDP's can be solved in polynomial-time using interior point methods
- A system of LMIs $F_{1}(x), F_{2}(x), \ldots, \succeq 0$ can be represented as a single LMI:

$$
F(x)=\left[\begin{array}{llll}
F_{1}(x) & & & \\
& F_{2}(x) & & \\
& & \ddots & \\
& & & F_{m}(x)
\end{array}\right] \succeq 0
$$

- For an $\mathbb{R}^{m \times n}$ matrix A, the inequality $A x \leq b$ can be represented as m LMIs:

$$
b_{i}-a_{i}^{\top} x \geq 0, \quad i=1,2, \ldots, m
$$

- Most optimization solvers cannot handle " \succ " \Rightarrow replace it with " \succeq "
- Example: Lyapunov's $A^{\top} P+P A \prec 0$ is an LMI

LMI Example

Lyapunov's Theorem

Real parts of eig(A) are negative iff there exists a real symmetric positive definite matrix $P=P^{\top} \succ 0$ such that:

$$
A^{\top} P+P A \prec 0 .
$$

- Can we write Lyapunov's inequality as an LMI?
- Define: $P=\left[\begin{array}{cccc}x_{1} & x_{2} & \ldots & x_{n} \\ x_{2} & x_{n+1} & & \\ \vdots & & & \\ x_{n} & x_{2 n-1} & \ldots & x_{m}\end{array}\right], m=\frac{(n+1) n}{2}: \#$ of Variables

$$
\begin{aligned}
& P_{1}=\left[\begin{array}{cccc}
1 & 0 & \ldots & 0 \\
0 & 0 & & \\
\vdots & & & \\
0 & 0 & \ldots & 0
\end{array}\right], P_{2}=\left[\begin{array}{cccc}
0 & 1 & \ldots & 0 \\
1 & 0 & & \\
\vdots & & & \\
0 & 0 & \ldots & 0
\end{array}\right], \ldots, P_{m}=\left[\begin{array}{cccc}
0 & 0 & \ldots & 0 \\
0 & 0 & & \\
\vdots & & & \\
0 & 0 & \ldots & 1
\end{array}\right] \\
\Rightarrow & A^{\top} P+P A=\sum_{i=1}^{m} x_{i}\left(A^{\top} P_{i}+P_{i} A\right)=-x_{1} F_{1}-x_{2} F_{2}-\ldots x_{m} F_{m} \prec 0
\end{aligned}
$$

IS AN LMI

Example - Convex Quadratic Functions

Is the quadratic function

$$
f(x)=x^{\top}\left[\begin{array}{lll}
1 & 2 & 2 \\
0 & 1 & 2 \\
0 & 0 & 0
\end{array}\right] x
$$

indefinite, positive definite, negative definite, positive semidefinite, or negative semidefinite?
(1) Start with finding the leading principal minors? NO!
(2) Need to symmetrize $f(x)$:

$$
f(x)=\frac{1}{2} x^{\top}\left(Q+Q^{\top}\right) x=\frac{1}{2} x^{\top}\left[\begin{array}{lll}
2 & 2 & 2 \\
2 & 2 & 2 \\
2 & 2 & 0
\end{array}\right] x
$$

(3) From the principal minors, we conclude that the quadratic form is indefinite

Most Popular LMIs

- LMIP - find a feasible x such that $F(x) \succ 0$
- Example: Lyapunov theorem
- EVP/PDP - eigenvalue problem (EVP) is to minimize the maximum eigenvalue of a matrix $A(x)$ that depends affinely on a variable subject to an LMI constraint
- Example: Finding the best H_{∞} robust controller: stabilization + good performance

Example - Eigenvalue Optimization

Suppose $A(x) \in \mathbb{C}^{n \times n}$ is a linear function of x

- Objective: minimize the maximum eigenvalue of $A(x)$:

$$
\begin{array}{ll}
\min _{x, \lambda} & \lambda \\
\text { s.t. } & \lambda \text { is the largest eig. of } A(x)
\end{array}
$$

- Eigenvalue:

$$
\begin{aligned}
A(x) v=\lambda v & \Rightarrow v^{*} A(x) v=\lambda v^{*} v \Rightarrow \frac{v^{*} A(x) v}{v^{*} v}=\lambda \\
& \Rightarrow \max _{v \in \mathbb{C}^{n}} \frac{v^{*} A(x) v}{v^{*} v}=\lambda_{\max } \\
& \Rightarrow \quad \lambda_{\max } v^{*} I v \geq v^{*} A(x) v \quad \forall v
\end{aligned}
$$

- Hence, optimization problem can be equivalently written as:

$\min _{\lambda}$	λ	$\min _{\lambda}$	λ
s.t.	$v^{*}(\lambda I-A(x)) v \geq 0 \quad \forall v$	s.t.	$\lambda I-A(x) \succeq 0$

Quadratic Optimization Problems

Quadratic Constrained Problem (QCP)

$\min _{x}$	$x^{*} C x$
s.t.	$x^{*} A_{i} x \leq b_{i}$

Solvability:

- If $C \succeq 0$ and $A_{i} \succeq 0$, solvable in polynomial time
- If any are not positive semi-definite (PSD), problem becomes NP-hard

Applications:

- Binary constraints: $x \in\{0,1\} \Leftrightarrow x^{2}=x$
- AC power flow in power systems
- Both examples are nonconvex

Relaxations

- Hard problem (exact):

$$
P_{1}: \min _{x \in \mathcal{X}} f(x)
$$

- Easier, relaxed problem:

$$
P_{2}: \min _{x \in \mathcal{Y}} f(x), \quad X \subset Y
$$

- Facts:
- (Obj. of $\left.P_{2}\right) \leq\left(\mathrm{Obj}\right.$. of $\left.P_{1}\right)$
- IF x IS OPTIMAL FOR RELAXATION AND FEASIBLE FOR EXACT, x IS OPTIMAL FOR EXACT
* Proof: Suppose x is relaxed optimal and feasible suboptimal for exact problem $\Rightarrow \exists y$ s.t. $f(y)<f(x), y \in X$. But by relaxation, $y \in Y$, and therefore x is not relaxed optimal - a contradiction

SDP Relaxations

- SDP can be written:

$$
\begin{array}{cl}
\min _{x} & \operatorname{trace}\left(x x^{*} C\right) \\
\text { s.t. } & \operatorname{trace}\left(x x^{*} A_{i}\right) \leq b_{i}
\end{array}
$$

- $X=x x^{*}$ equivalent to: $X \succeq 0, \operatorname{rank}(X)=1$

$$
\begin{array}{cl}
\min _{X} & \operatorname{trace}(X C) \\
\text { s.t. } & \operatorname{trace}\left(X A_{i}\right) \leq b_{i} \\
& X \succeq 0 \\
& \operatorname{rank}(X)=1
\end{array}
$$

- Removing a constraint enlarges the feasible set, i.e. relaxation:

$$
\begin{array}{cl}
\min _{X} & \operatorname{trace}(X C) \\
\text { s.t. } & \operatorname{trace}\left(X A_{i}\right) \leq b_{i} \\
& X \succeq 0
\end{array}
$$

- If solution X^{*} has rank 1 , then relaxation is tight
- Feasible, optimal exact solution is Cholesky: $X=x x^{*}$

Linear Relaxation

- Consider the following optimizaton problem:

$$
\begin{array}{cl}
\underset{x}{\min } & x_{1}\left(x_{2}-1\right) \\
\text { s.t. } & x_{1} \geq 1 \\
& x_{2} \geq 2 \\
& x_{1} x_{2} \leq 3
\end{array}
$$

- Clearly, this problem is not convex (objective \& a constraint)
- Relaxation: let $y=x_{1} x_{2}$, OP becomes:

$$
\begin{array}{lc}
\min _{x, y} & y-x_{1} \\
\text { s.t. } & x_{1} \geq 1 \\
& x_{2} \geq 2 \\
& y \leq 3 \\
\underbrace{y-2 x_{1}-x_{2}+2}_{=\left(x_{1}-1\right)\left(x_{2}-2\right)} \geq 0
\end{array}
$$

- Last constraint guarantees that $y \neq-\infty$

Solving Unconstrained OPs

Objective:

$$
\operatorname{minimize}_{x \in \mathbb{R}^{n}} f(x)
$$

Necessary \& Sufficinet Conditions for Optimality

x^{*} is a local minimum of $f(x)$ iff:
(1) Zero gradient at x^{*} :

$$
\nabla_{x} f\left(x^{*}\right)=0
$$

(2) Hessian at x^{*} is positive semi-definite:

$$
\nabla_{x}^{2} f\left(x^{*}\right) \succeq 0
$$

- For maximization, Hessian is negative semi-definite

Solving Constrained OPs

- Main objective: find/compute minimum or a maximum of an objective function subject to equality and inequality constraints
- Formally, problem defined as finding the optimal x^{*} :

$$
\begin{array}{rc}
\min _{x} & f(x) \\
\text { subject to } & g(x) \leq 0 \\
& h(x)=0
\end{array}
$$

$-x \in \mathbb{R}^{n}$

- $f(x)$ is scalar function, possibly nonlinear
- $g(x) \in \mathbb{R}^{m}, h(x) \in \mathbb{R}^{l}$ are vectors of constraints

Main Principle

To solve constrained optimization problems: transform constrained problems to unconstrained ones.

How?

Augment the constraints to the cost function.

KKT Conditions

$$
\min _{x} \quad f(x)
$$

subject to $g(x) \leq 0$

$$
h(x)=0
$$

- Define the Lagrangian: $\mathcal{L}(x, \lambda, \mu)=f(x)+\lambda^{T} h(x)+\mu^{T} g(x)$

Optimality Conditions

The constrained optimization problem (above) has a local minimizer x^{*} iff there exists a unique μ^{*} such that:
(1) $\nabla_{x} \mathcal{L}\left(x^{*}, \lambda^{*}, \mu^{*}\right)=\nabla_{x} f(x)+\lambda^{* T} \nabla_{x} h\left(x^{*}\right)+\mu^{* T} \nabla_{x} g\left(x^{*}\right)=0$
(2) $\mu_{j}^{*} \geq 0$ for $j=1, \ldots, m$
(3) $\mu_{j}^{*} g_{j}\left(x^{*}\right)=0$ for $j=1, \ldots, m$
(9) $g_{j}\left(x^{*}\right) \leq 0$ for $j=1, \ldots, m$
(5) $h_{i}\left(x^{*}\right)=0$ for $i=1, \ldots, l$ (if $x^{*}, \mu^{*}, \lambda^{*}$ satisfy $1-5$, they are candidates)
(. Second order necessary conditions (SONC): $\nabla_{x}^{2} \mathcal{L}\left(x^{*}, \lambda^{*}, \mu^{*}\right) \succeq 0$

KKT Conditions - Example ${ }^{3}$

Find the minimizer of the following optimization problem:

$$
\begin{aligned}
\underset{x}{\operatorname{minimize}} & f(x)=\left(x_{1}-1\right)^{2}+x_{2}-2 \\
\text { subject to } & g(x)=x_{1}+x_{2}-2 \leq 0 \\
& h(x)=x_{2}-x_{1}-1=0
\end{aligned}
$$

- First, find the Lagrangian function:

$$
\mathcal{L}(x, \lambda, \mu)=\left(x_{1}-1\right)^{2}+x_{2}-2+\lambda\left(x_{2}-x_{1}-1\right)+\mu\left(x_{1}+x_{2}-2\right)
$$

- Second, find the conditions of optimality (from previous slide):

$$
\begin{aligned}
& \text { (1) } \nabla_{x} \mathcal{L}\left(x^{*}, \lambda^{*}, \mu^{*}\right)=\left[\begin{array}{ll}
2 x_{1}^{*}-2-\lambda^{*}+\mu^{*} & 1+\lambda^{*}+\mu^{*}
\end{array}\right]^{\top}=\left[\begin{array}{ll}
0 & 0
\end{array}\right]^{\top} \\
& \text { (2) } \mu^{*}\left(x_{1}^{*}+x_{2}^{*}-2\right)=0 \\
& \text { (3) } \mu^{*} \geq 0 \\
& \text { (9) } x_{1}^{*}+x_{2}^{*}-2 \leq 0 \\
& \text { (3) } x_{2}^{*}-x_{1}^{*}-1=0 \\
& \text { (0) } \nabla_{x}^{2} \mathcal{L}\left(x^{*}, \lambda^{*}, \mu^{*}\right)=\nabla_{x}^{2} f\left(x^{*}\right)+\lambda^{*} \nabla_{x}^{2} h\left(x^{*}\right)+\mu^{*} \nabla_{x}^{2} g\left(x^{*}\right) \succeq 0 \\
& =\left[\begin{array}{ll}
2 & 0 \\
0 & 0
\end{array}\right]+\lambda^{*}\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]+\mu^{*}\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right] \succeq 0
\end{aligned}
$$

[^2]
Example - Cont'd

- To solve the system equations for the optimal $x^{*}, \lambda^{*}, \mu^{*}$, we first try $\mu^{*}>0$.
- Given that, we solve the following set of equations:
(1) $2 x_{1}^{*}-2-\lambda^{*}+\mu^{*}=0$
(2) $1+\lambda^{*}+\mu^{*}=0$
(3) $x_{1}^{*}+x_{2}^{*}-2=0$
(9) $x_{2}^{*}-x_{1}^{*}-1=0$
$\Rightarrow x_{1}^{*}=0.5, x_{2}^{*}=1.5, \lambda^{*}=-1, \mu^{*}=0$
- But this solution contradicts the assumption that $\mu^{*}>0$
- Alternative: assume $\mu^{*}=0 \Rightarrow x_{1}^{*}=0.5, x_{2}^{*}=1.5, \lambda^{*}=-1, \mu^{*}=0$
- This solution satisfies $g\left(x^{*}\right) \leq 0$ constraint, hence it's a candidate for being a minimizer
- We now verify the SONC: $L\left(x^{*}, \lambda^{*}, \mu^{*}\right)=\left[\begin{array}{ll}2 & 0 \\ 0 & 0\end{array}\right] \succeq 0$
- Thus, $x^{*}=\left[\begin{array}{ll}0.5 & 1.5\end{array}\right]^{\top}$ is a strict local minimizer

OPs Taxonomy

Figure from:
http://www.neos-guide.org/content/optimization-introduction

Solvers

- Solving optimization problems require few things
(1) Modeling the problem
(2) Translating the problem model (constraints and objectives) into a modeling language (AMPL, GAMS, MATLAB, YALMIP, CVX)
(3) Choosing optimization algorithms solvers (Simplex, Interior-Point, Brand \& Bound, Cutting Planes,...)
(9) Specifying tolerance, exit flags, flexible constraints, bounds, ...
- Convex optimization problems: use cvx (super easy to install and code)
- MATLAB's fmincon is always handy too (too much overhead, often fails to converge for nonlinear optimization problems)
- Visit http://www.neos-server.org/neos/solvers/index.html
- Check http://www.neos-guide.org/ to learn more

Complexity

- Clearly, complexity of an OP depends on the solver used
- Example: most LMI solvers use interior-point methods
- Complexity: primal-dual interior-point has a worst-case complexity $\mathcal{O}\left(m^{2.75} L^{1.5}\right)$
- m: \#ofVariables, L: \#ofConstraints
- Applies to a set of L Lyapunov inequalities
- Typical performance: $\mathcal{O}\left(m^{2.1} L^{1.2}\right)$

Questions And Suggestions?

References I

Boyd, S., \& Vandenberghe, L. (2004). Convex Optimization. New York, NY, USA: Cambridge University Press.
Chong, E., \& Zak, S. (2011). An Introduction to Optimization. Wiley Series in Discrete Mathematics and Optimization. Wiley. URL https://books.google.com/books?id=THlxFmlEy_AC

Taylor, J. (2015). Convex Optimization of Power Systems. Cambridge University Press.

[^0]: ${ }^{1}$ Much of the material presented in this module can be found in [Taylor, 2015; Boyd \& Vandenberghe, 2004]

[^1]: ${ }^{2}$ NP-hard: no polynomial-time (efficient) algorithm can exist

[^2]: ${ }^{3}$ Example from [Chong \& Zak, 2011]

