Optimization Intro

LPs & MIPs 000 QCP & Relaxations

Optimality Conditions

Optimization Solvers

References

Module 04 — Optimization Problems KKT Conditions & Solvers

Ahmad F. Taha

EE 5243: Introduction to Cyber-Physical Systems

Email: ahmad.taha@utsa.edu

Webpage: http://engineering.utsa.edu/~taha/index.html

September 14, 2015

In this module, we present basic mathematical optimization principles. The following topics are covered $^1\!\!:$

- General introduction to optimization
- Convex optimization
- Linear programming, SDP
- Mixed-integer programming
- Relaxations
- KKT optimality conditions
- Optimization problems solvers

©Ahmad F. Taha

 $^{^1 \}rm Much$ of the material presented in this module can be found in [Taylor, 2015; Boyd & Vandenberghe, 2004]

Optimization Intro LPs & MIPs SDPs QCP & Relaxations Optimility Conditions Optimization Solvers References ••• <

Given a function to be minimized, $f(x)\text{, }x\in \mathbb{R}^n$

- x_0 is a global minimum of $f(x) \Rightarrow f(x_0) \le f(x)$ for all x
- x_0 is a local minimum of $f(x) \Rightarrow f(x_0) \le f(x)$ for $\{x \in \mathbb{R}^n; ||x - x_0|| \le \epsilon, \epsilon > 0\}$

Convexity:

• Function — f(x) is convex if:

$$f(\alpha x + (1 - \alpha)y) \le \alpha f(x) + (1 - \alpha)f(y)$$

for all $0 \leq \alpha \leq 1$

- Set \mathcal{X} is convex if $x, y \in \mathcal{X} \Rightarrow \alpha x + (1 \alpha)y \in \mathcal{X}$
- If g(x) is convex, then $\mathcal{X} = \{x \mid g(x) \leq 0\}$ is convex

Convex Optimization Problem

$$\begin{array}{ll} \min_{x\in\mathbb{R}^n} & f(x) \\ \text{s.t.} & g_i(x) \leq 0, \ i=1,...,m \end{array}$$

 $f(x), g_i(x)$ are all convex \Rightarrow any local minimum is a global minimum

Optimization Intro LPs & MIPs SDPs QCP & Relaxations Optimizity Conditions Optimization Solvers References 0 000 0000

Functions mapping $\mathbb{R} \to \mathbb{R}$:

- Affine (ax + b), exponential (e^{ax})
- Powers $(x^a; a \ge 1, a \le 0)$, powers of absolute value $(|x|^p; p \ge 1)$ Functions mapping $\mathbb{R}^n \to \mathbb{R}$:
 - Affine $(a^{\top}x + b)$
 - Vector norms ($\|x\|_p = \left(\sum_{i=1}^n |x|^p\right)^{rac{1}{p}}$, $p \geq 1$)

Functions mapping $\mathbb{R}^{n \times m} \to \mathbb{R}$:

- Affine $(f(X) = trace(A^{\top}X) + b)$
- Matrix norms ($||X||_2 = \sigma_{\max}(X) = \sqrt{\lambda_{\max}(X^{\top}X)}$)

Optimization Intro	LPs & MIPs	SDPs	QCP & Relaxations	Optimality Conditions	Optimization Solvers	References
00	•00	0000000	0000	00000	0000	
Tractability	& Linear	Progran	ns			

Computational tractability:

- Convex optimization: easy to solve, polynomial-time
- Nonconvex optimization: difficult to solve, NP-hard²

Linear programming:

- $f(x) = c^T x$
- Affine constraints: $g_i(x) = a_i^T x b_i$ (usually as vector: $Ax \leq b$)
- Easiest type of optimization
- Solvable in polynomial time
- Quadratic programming with $f(\boldsymbol{x}) = \boldsymbol{x}^T \boldsymbol{Q} \boldsymbol{x}$ is also easy if \boldsymbol{Q} is symmetric positive semi-definite
- Is it convex? See next slide

²NP-hard: no polynomial-time (efficient) algorithm can exist

Optimization Intro LPs & MIPs SDPs QCP & Relaxations Optimility Conditions Optimization Solvers References 00 0 0 0 0 0 0 0 0 0 Convexity of a Quadratic Function

Solution:

• Given that $f(x) = x^{\top}Qx$, we apply the definition of convex function.

$$\alpha f(x) + (1 - \alpha)f(y) - f(\alpha x + (1 - \alpha)y) \ge 0.$$

• Substituting for f(x) into the LHS of the previous equation yields:

$$\begin{split} &\alpha x^{\top}Qx + (1-\alpha)y^{\top}Qy - (\alpha x + (1-\alpha)y)^{\top}Q(\alpha x + (1-\alpha)y) \\ &= \alpha(1-\alpha)x^{\top}Qx - 2\alpha(1-\alpha)x^{\top}Qy + \alpha(1-\alpha)y^{\top}Qy = \alpha(1-\alpha)(x-y)^{\top}Q(x-y) \\ &\bullet \text{ Define } z = x - y \Rightarrow \\ &\alpha(1-\alpha)z^{\top}Qz \\ &\bullet \text{ Since } 0 \leq \alpha \leq 1, \ Q = Q^{\top} \succeq \text{ and } \forall z \Rightarrow \end{split}$$

$$\alpha(1-\alpha)z^{\top}Qz \ge 0$$

Optimization Intro	LPs & MIPs	SDPs	QCP & Relaxations	Optimality Conditions	Optimization Solvers	References
00	000	0000000	0000	00000	0000	
Mixed-Integ	ger Progr	amming				

MIP

$\min_{x,y}$	f(x,y)
s.t.	$g_i(x,y) \le 0, \ i = 1,, m$
	$y_i \in \mathbb{Z}$ (the integers)

- NP-hard even when f and g_i are all linear
- $y_i \in \mathbb{Z}$ is nononvex
- Very common in CPS planning problems
- Even more relevant in smart grids: unit commitment problem, expansion models, . . .

Optimization Intro	LPs & MIPs	SDPs	QCP & Relaxations	Optimality Conditions	Optimization Solvers	References
00	000	000000	0000	00000	0000	
Semidefinit	e Prograi	mming				

- Hermitian: $X = X^*$ (conjugate transpose), $X \in \mathbb{C}^{n \times n}$
- **Definition**: $z^*Xz \ge 0$ for all $z \in \mathbb{R}^n$
- Equivalent: all eigs. of X nonnegative, all principal minors nonnegative
- Notation: $X \succeq 0$
- $X \succeq 0$ is convex constraint

Proof: Suppose $X, Y \succeq 0$. Then

$$z^*(\alpha X + (1-\alpha)Y)z = \alpha z^*Xz + (1-\alpha)z^*Yz \ge 0$$

Optimization Intro	LPs & MIPs	SDPs	QCP & Relaxations	Optimality Conditions	Optimization Solvers	References
00	000	0000000	0000	00000	0000	
Semidefinit	e Prograr	nming —	- 2			

Semidefinite Program (SDP)

$$\min_{X} \quad \text{trace}(CX)$$
s.t.
$$\text{trace}(A_{i}X) = b_{i} , X \succeq 0$$

Semidefinite Program (SDP) — Form 2

$$\min_{x} \quad c^{\top}x$$

s.t.
$$\underbrace{F(x) = F_0 + \sum_{i=1}^{n} F_i x_i \succeq 0}_{\text{Linear Matrix Ineguality (LMI), } F_i = F^{\top}}$$

- SDP: linear cost function, LMI constraints Convex, 1 minimum
- Generalization of LP (don't solve LP as SDP)
- SDP's can be solved in polynomial-time using interior point methods

©Ahmad F. Taha

Optimization Intro	LPs & MIPs	SDPs	QCP & Relaxations	Optimality Conditions	Optimization Solvers	References
00	000	0000000	0000	00000	0000	
LMIs						

• A system of LMIs $F_1(x), F_2(x), \ldots, \succeq 0$ can be represented as a single LMI:

$$F(x) = \begin{bmatrix} F_1(x) & & \\ & F_2(x) & & \\ & & \ddots & \\ & & & & F_m(x) \end{bmatrix} \succeq 0$$

• For an $\mathbb{R}^{m\times n}$ matrix A, the inequality $Ax\leq b$ can be represented as m LMIs:

$$b_i - a_i^{\top} x \ge 0, \ i = 1, 2, \dots, m$$

- $\bullet\,$ Most optimization solvers cannot handle " \succ " \Rightarrow replace it with " \succeq "
- Example: Lyapunov's $A^{\top}P + PA \prec 0$ is an LMI

Optimization Intro	LPs & MIPs	SDPs	QCP & Relaxations	Optimality Conditions	Optimization Solvers	References
00	000	0000000	0000	00000	0000	
LMI Examp	ole					

Lyapunov's Theorem

Real parts of eig(A) are negative iff there exists a real symmetric positive definite matrix $P = P^{\top} \succ 0$ such that:

$$A^{\top}P + PA \prec 0.$$

• Can we write Lyapunov's inequality as an LMI?

• Define:
$$P = \begin{bmatrix} x_1 & x_2 & \dots & x_n \\ x_2 & x_{n+1} & & \\ \vdots & & & \\ x_n & x_{2n-1} & \dots & x_m \end{bmatrix}$$
, $m = \frac{(n+1)n}{2}$: # of Variables
 $P_1 = \begin{bmatrix} 1 & 0 & \dots & 0 \\ 0 & 0 & & \\ \vdots & & \\ 0 & 0 & \dots & 0 \end{bmatrix}$, $P_2 = \begin{bmatrix} 0 & 1 & \dots & 0 \\ 1 & 0 & & \\ \vdots & & \\ 0 & 0 & \dots & 0 \end{bmatrix}$, $\dots, P_m = \begin{bmatrix} 0 & 0 & \dots & 0 \\ 0 & 0 & & \\ \vdots & & \\ 0 & 0 & \dots & 1 \end{bmatrix}$
 $\Rightarrow A^{\top}P + PA = \sum_{i=1}^m x_i (A^{\top}P_i + P_iA) = -x_1F_1 - x_2F_2 - \dots x_mF_m \prec 0$

IS AN LMI

Is the quadratic function

$$f(x) = x^{\top} \begin{bmatrix} 1 & 2 & 2 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{bmatrix} x$$

indefinite, positive definite, negative definite, positive semidefinite, or negative semidefinite?

Start with finding the leading principal minors? NO!

2 Need to symmetrize f(x):

$$f(x) = \frac{1}{2}x^{\top}(Q + Q^{\top})x = \frac{1}{2}x^{\top}\begin{bmatrix} 2 & 2 & 2\\ 2 & 2 & 2\\ 2 & 2 & 0 \end{bmatrix}x$$

From the principal minors, we conclude that the quadratic form is indefinite

Optimization Intro	LPs & MIPs	SDPs	QCP & Relaxations	Optimality Conditions	Optimization Solvers	References
00	000	0000000	0000	00000	0000	
Most Popu	lar LMIs					

- LMIP find a feasible x such that $F(x) \succ 0$
- Example: Lyapunov theorem
- **EVP/PDP** eigenvalue problem (EVP) is to minimize the maximum eigenvalue of a matrix A(x) that depends affinely on a variable subject to an LMI constraint
- Example: Finding the best H_{∞} robust controller: stabilization + good performance

Optimization Intro LPs & MIPs SDPs QCP & Relaxations Optimility Conditions Optimization Solvers References 00 000 0000 0000 0000 0000 0000 0000 0000 Example — Eigenvalue Optimization

Suppose $A(x) \in \mathbb{C}^{n \times n}$ is a linear function of x

• **Objective:** minimize the maximum eigenvalue of A(x):

$$\begin{array}{ll} \min_{x,\lambda} & \lambda \\ \text{s.t.} & \lambda \text{ is the largest eig. of } A(x) \end{array}$$

• Eigenvalue:

$$\begin{aligned} A(x)v &= \lambda v \quad \Rightarrow \quad v^*A(x)v = \lambda v^*v \quad \Rightarrow \quad \frac{v^*A(x)v}{v^*v} = \lambda \\ &\Rightarrow \quad \max_{v \in \mathbb{C}^n} \frac{v^*A(x)v}{v^*v} = \lambda_{\max} \\ &\Rightarrow \quad \lambda_{\max}v^*Iv \ge v^*A(x)v \quad \forall v \end{aligned}$$

• Hence, optimization problem can be equivalently written as:

 $\begin{array}{ll} \min_{\lambda} & \lambda & \min_{\lambda} & \lambda \\ \mathrm{s.t.} & v^*(\lambda I - A(x))v \geq 0 \quad \forall v & \mathrm{s.t.} & \lambda I - A(x) \succeq 0 \end{array}$

Optimization Intro	LPs & MIPs	SDPs	QCP & Relaxations	Optimality Conditions	Optimization Solvers	References
00	000	0000000	0000	00000	0000	
Quadratic	Optimizat	tion Prob	lems			

Quadratic	Constrained	Problem	(QCP)
-----------	-------------	---------	-------

\min_x	x^*Cx
s.t.	$x^*A_ix \le b_i$

Solvability:

- If $C \succeq 0$ and $A_i \succeq 0$, solvable in polynomial time

- If any are not positive semi-definite (PSD), problem becomes NP-hard

Applications:

- Binary constraints: $x \in \{0, 1\} \Leftrightarrow x^2 = x$
- AC power flow in power systems
- Both examples are nonconvex

Optimization Intro 00	LPs & MIPs 000	SDPs 0000000	QCP & Relaxations	Optimality Conditions	Optimization Solvers	References
Relaxations						

• Hard problem (exact):

 $P_1: \min_{x \in \mathcal{X}} f(x)$

• Easier, relaxed problem:

$$P_2: \min_{x \in \mathcal{Y}} f(x), \quad X \subset Y$$

- Facts:
 - (Obj. of P_2) \leq (Obj. of P_1)
 - IF x IS OPTIMAL FOR RELAXATION AND FEASIBLE FOR EXACT, x IS OPTIMAL FOR EXACT
 - * **Proof:** Suppose x is relaxed optimal and feasible suboptimal for exact problem $\Rightarrow \exists y \text{ s.t. } f(y) < f(x), y \in X$. But by relaxation, $y \in Y$, and therefore x is not relaxed optimal a contradiction

Optimization Intro	LPs & MIPs	SDPs	QCP & Relaxations	Optimality Conditions	Optimization Solvers	References
00	000	0000000	0000	00000	0000	
SDP Relax	ations					

• SDP can be written:

$$\min_{x} \quad \operatorname{trace}(xx^{*}C) \\ \text{s.t.} \quad \operatorname{trace}(xx^{*}A_{i}) \leq b_{i}$$

• $X = xx^*$ equivalent to: $X \succeq 0$, rank(X) = 1

$$\begin{array}{ll} \min_{X} & \operatorname{trace}(XC) \\ \text{s.t.} & \operatorname{trace}(XA_{i}) \leq b_{i} \\ & X \succeq 0 \\ & \operatorname{rank}(X) = 1 \end{array}$$

• Removing a constraint enlarges the feasible set, i.e. relaxation:

 $\min_{X} \quad \text{trace}(XC) \\ \text{s.t.} \quad \text{trace}(XA_i) \le b_i \\ \quad X \succeq 0$

- If solution X^{*} has rank 1, then *relaxation is tight*
- \bullet Feasible, optimal exact solution is Cholesky: $X=xx^{\ast}$

Optimization Intro	LPs & MIPs	SDPs	QCP & Relaxations	Optimality Conditions	Optimization Solvers	References
00	000	0000000	0000	00000	0000	
Linear Rela	xation					

• Consider the following optimizaton problem:

$$\begin{array}{ll} \min_{x} & x_1(x_2 - 1) \\ \text{s.t.} & x_1 \ge 1 \\ & x_2 \ge 2 \\ & & x_1 x_2 \le 3 \end{array}$$

- Clearly, this problem is not convex (objective & a constraint)
- **Relaxation:** let $y = x_1 x_2$, OP becomes:

$$\begin{array}{ll} \min_{x,y} & y - x_1 \\ \text{s.t.} & x_1 \ge 1 \\ & x_2 \ge 2 \\ & y \le 3 \\ \underbrace{y - 2x_1 - x_2 + 2}_{=(x_1 - 1)(x_2 - 2)} \ge 0
\end{array}$$

• Last constraint guarantees that $y \neq -\infty$

Optimization Intro	LPs & MIPs	SDPs	QCP & Relaxations	Optimality Conditions	Optimization Solvers	References
00	000	0000000	0000	0000	0000	
Solving Un	constrain	ed OPs				

Objective:

 $\underset{x \in \mathbb{R}^n}{\operatorname{minimize}} f(x)$

Necessary & Sufficinet Conditions for Optimality

- x^* is a local minimum of f(x) iff:
 - Zero gradient at x^* :

$$\nabla_x f(x^*) = 0$$

2 Hessian at x^* is positive semi-definite:

 $\nabla_x^2 f(x^*) \succeq 0$

• For maximization, Hessian is negative semi-definite

Optimization Intro LPs & MIPs SDPs QCP & Relaxations Optimiative Conditions Optimization Solvers References Solving Constrained OPs OPs

- Main objective: find/compute minimum or a maximum of an objective function subject to equality and inequality constraints
- Formally, problem defined as finding the optimal x^* :

 $\min_{x} \quad f(x)$ subject to $g(x) \le 0$ h(x) = 0

 $-x \in \mathbb{R}^n$

- f(x) is scalar function, possibly nonlinear
- $g(x) \in \mathbb{R}^m, h(x) \in \mathbb{R}^l$ are vectors of constraints

Main Principle

To solve constrained optimization problems: transform constrained problems to unconstrained ones.

How? Augment the constraints to the cost function.

©Ahmad F. Taha

$$\min_{x} f(x)$$
subject to $g(x) \le 0$
 $h(x) = 0$

• Define the Lagrangian: $\mathcal{L}(x,\lambda,\mu) = f(x) + \lambda^T h(x) + \mu^T g(x)$

Optimality Conditions

The constrained optimization problem (above) has a local minimizer x^* iff there exists a unique μ^* such that:

$$\nabla_x \mathcal{L}(x^*, \lambda^*, \mu^*) = \nabla_x f(x) + \lambda^{*T} \nabla_x h(x^*) + \mu^{*T} \nabla_x g(x^*) = 0$$

$$\ 2 \ \ \mu_j^* \geq 0 \ \, \text{for} \ \ j=1,\ldots,m$$

3
$$\mu_j^* g_j(x^*) = 0$$
 for $j = 1, ..., m$

•
$$g_j(x^*) \leq 0$$
 for $j = 1, \dots, m$

(a) $h_i(x^*) = 0$ for i = 1, ..., l (if x^*, μ^*, λ^* satisfy 1–5, they are candidates)

() Second order necessary conditions (SONC): $\nabla^2_x \mathcal{L}(x^*, \lambda^*, \mu^*) \succeq 0$

Optimization Intro LPs & MIPs SDPs QCP & Relaxations Optimility Conditions Optimization Solvers References 00 000 000000 0000 00000 00000 00000 KKT Conditions — Example³

Find the minimizer of the following optimization problem:

minimize
$$f(x) = (x_1 - 1)^2 + x_2 - 2$$

subject to $g(x) = x_1 + x_2 - 2 \le 0$
 $h(x) = x_2 - x_1 - 1 = 0$

• First, find the Lagrangian function:

$$\mathcal{L}(x,\lambda,\mu) = (x_1 - 1)^2 + x_2 - 2 + \lambda(x_2 - x_1 - 1) + \mu(x_1 + x_2 - 2)$$

• Second, find the conditions of optimality (from previous slide):

$$\begin{aligned} \mathbf{\nabla}_{x}\mathcal{L}(x^{*},\lambda^{*},\mu^{*}) &= \begin{bmatrix} 2x_{1}^{*}-2-\lambda^{*}+\mu^{*} & 1+\lambda^{*}+\mu^{*} \end{bmatrix}^{\top} = \begin{bmatrix} 0 & 0 \end{bmatrix}^{\top} \\ \mathbf{\mu}^{*}(x_{1}^{*}+x_{2}^{*}-2) &= 0 \\ \mathbf{\mu}^{*} \geq 0 \\ \mathbf{\mu}^{*} \geq 0 \\ \mathbf{\mu}^{*} \geq 0 \\ \mathbf{\mu}^{*} x_{2}^{*}-x_{1}^{*}-1 &= 0 \\ \mathbf{\mu}^{*} x_{2}^{*}-x_{1}^{*}-1 &= 0 \\ \mathbf{\mu}^{*} x_{2}^{*}-x_{1}^{*}-1 &= 0 \\ \mathbf{\mu}^{*} \nabla_{x}^{*}\mathcal{L}(x^{*},\lambda^{*},\mu^{*}) &= \nabla_{x}^{2}f(x^{*})+\lambda^{*}\nabla_{x}^{2}h(x^{*})+\mu^{*}\nabla_{x}^{2}g(x^{*}) \succeq 0 \\ &= \begin{bmatrix} 2 & 0 \\ 0 & 0 \end{bmatrix} +\lambda^{*} \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} +\mu^{*} \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \succeq 0 \end{aligned}$$

³Example from [Chong & Zak, 2011]

- To solve the system equations for the optimal x^*, λ^*, μ^* , we first try $\mu^* > 0.$
- Given that, we solve the following set of equations:

$$\begin{array}{l} \bullet & 2x_1^* - 2 - \lambda^* + \mu^* = 0 \\ \bullet & 1 + \lambda^* + \mu^* = 0 \\ \bullet & x_1^* + x_2^* - 2 = 0 \\ \bullet & x_2^* - x_1^* - 1 = 0 \\ \Rightarrow & x_1^* = 0.5, x_2^* = 1.5, \lambda^* = -1, \mu^* = 0 \end{array}$$

- But this solution contradicts the assumption that $\mu^* > 0$
- Alternative: assume $\mu^* = 0 \Rightarrow x_1^* = 0.5, x_2^* = 1.5, \lambda^* = -1, \mu^* = 0$
- $\bullet\,$ This solution satisfies $g(x^*) \leq 0$ constraint, hence it's a candidate for being a minimizer
- We now verify the SONC: $L(x^*, \lambda^*, \mu^*) = \begin{bmatrix} 2 & 0 \\ 0 & 0 \end{bmatrix} \succeq 0$
- Thus, $x^* = \begin{bmatrix} 0.5 & 1.5 \end{bmatrix}^\top$ is a strict local minimizer

http://www.neos-guide.org/content/optimization-introduction

Optimization Intro	LPs & MIPs 000	SDPs 0000000	QCP & Relaxations	Optimality Conditions	Optimization Solvers	References
Solvers						

- Solving optimization problems require few things
 - Modeling the problem
 - Translating the problem model (constraints and objectives) into a modeling language (AMPL, GAMS, MATLAB, YALMIP, CVX)
 - Ochoosing optimization algorithms solvers (Simplex, Interior-Point, Brand & Bound, Cutting Planes,...)
 - Specifying tolerance, exit flags, flexible constraints, bounds, ...
- Convex optimization problems: use cvx (super easy to install and code)
- MATLAB's fmincon is always handy too (too much overhead, often fails to converge for nonlinear optimization problems)
- Visit http://www.neos-server.org/neos/solvers/index.html
- Check http://www.neos-guide.org/ to learn more

Optimization Intro	LPs & MIPs	SDPs	QCP & Relaxations	Optimality Conditions	Optimization Solvers	References
00	000	0000000	0000	00000	0000	
Complexity						

- Clearly, complexity of an OP depends on the solver used
- Example: most LMI solvers use interior-point methods
- \bullet Complexity: primal-dual interior-point has a worst-case complexity $\mathcal{O}(m^{2.75}L^{1.5})$
- m: #ofVariables, L: #ofConstraints
- Applies to a set of L Lyapunov inequalities
- Typical performance: $\mathcal{O}(m^{2.1}L^{1.2})$

Optimization Intro	LPs & MIPs	SDPs	QCP & Relaxations	Optimality Conditions	Optimization Solvers	References
00	000	0000000	0000	00000	0000	
Questions .	And Sugg	gestions?				

Thank You!

Please visit engineering.utsa.edu/~taha IFF you want to know more ©

Optimization Intro	LPs & MIPs	SDPs	QCP & Relaxations	Optimality Conditions	Optimization Solvers	References
References]	0000000	0000	00000	0000	

- Boyd, S., & Vandenberghe, L. (2004). Convex Optimization. New York, NY, USA: Cambridge University Press.
- Chong, E., & Zak, S. (2011). An Introduction to Optimization. Wiley Series in Discrete Mathematics and Optimization. Wiley. URL https://books.google.com/books?id=TH1xFm1Ey_AC
- Taylor, J. (2015). Convex Optimization of Power Systems. Cambridge University Press.