# Module 03 <br> Linear Systems Theory: Necessary Background 

Ahmad F. Taha

EE 5243: Introduction to Cyber-Physical Systems
Email: ahmad.taha@utsa.edu
Webpage: http://engineering.utsa.edu/~taha/index.html

September 2, 2015

## Module 03 Outline

We will review in couple lectures the necessary background needed in linear systems theory and design. Outline of this module is as follows:

- Computation of solution for an ODE, LTI systems
(2) Stability of linear systems and Jordan blocks
- Discrete dynamical systems
- Controllability, observability, stabilizability, detectability
- Design of controllers and observers
- Linearization of nonlinear systems


## LTI Systems

- LTI dynamical system:

$$
\begin{align*}
\dot{x}(t) & =A x(t)+B u(t), \quad x_{\text {initial }}=x_{t_{0}}  \tag{1}\\
y(t) & =C x(t)+D u(t) \tag{2}
\end{align*}
$$

- We now know that the solution is given by:

$$
x(t)=e^{A\left(t-t_{0}\right)} x_{t_{0}}+\int_{t_{0}}^{t} e^{A(t-\tau)} B u(\tau) d \tau
$$

- Clearly the output solution is:

$$
y(t)=\underbrace{C\left(e^{A\left(t-t_{0}\right)} x_{t_{0}}\right)}_{\text {zero input response }}+\underbrace{C \int_{t_{0}}^{t} e^{A(t-\tau)} B u(\tau) d \tau+D u(t)}_{\text {zero state response }}
$$

- Question: how do I analytically compute the solution to (1)?
- Answer: you need to (a) integrate and (b) compute matrix exponentials (given $A, B, C, D, x_{t_{0}}, u(t)$ )


## Matrix Exponential - 1

- Exponential of scalar variable:

$$
e^{a}=\sum_{i=0}^{\infty} \frac{a^{i}}{i!}=1+a+\frac{a^{2}}{2!}+\frac{a^{3}}{3!}+\frac{a^{4}}{4!}+\cdots
$$

- Power series converges $\forall a \in \mathbb{R}$
- How about matrices? For $A \in \mathbb{R}^{n \times n}$, matrix exponential:

$$
e^{A}=\sum_{i=0}^{\infty} \frac{A^{i}}{i!}=I_{n}+A+\frac{A^{2}}{2!}+\frac{A^{3}}{3!}+\frac{A^{4}}{4!}+\cdots
$$

- What if we have a time-variable?

$$
e^{t A}=\sum_{i=0}^{\infty} \frac{(t A)^{i}}{i!}=I_{n}+t A+\frac{(t A)^{2}}{2!}+\frac{(t A)^{3}}{3!}+\frac{(t A)^{4}}{4!}+\cdots
$$

## Matrix Exponential Properties

For a matrix $A \in \mathbb{R}^{n \times n}$ and a constant $t \in \mathbb{R}$ :
(1) $A v=\lambda v \Rightarrow e^{A t} v=e^{\lambda t} v$
(2) ${ }^{1} \operatorname{det}\left(e^{A t}\right)=e^{(\operatorname{trace}(A)) t}$
(3) $\left(e^{A t}\right)^{-1}=e^{-A t}$
(1) $e^{A^{\top} t}=\left(e^{A t}\right)^{\top}$
(0) If $A, B$ commute, then: $e^{(A+B) t}=e^{A t} e^{B t}=e^{B t} e^{A t}$
(0) $e^{A\left(t_{1}+t_{2}\right)}=e^{A t_{1}} e^{A t_{2}}=e^{A t_{2}} e^{A t_{1}}$

[^0]
## When Is It Easy to Find $e^{A}$ ? Method 1

Well...Obviously if we can directly use $e^{A}=I_{n}+A+\frac{A^{2}}{2!}+\cdots$
Three cases:

- $A$ is nilpotent ${ }^{2}$, i.e., $A^{k}=0$ for some $k$. Example: $A=\left[\begin{array}{ccc}5 & -3 & 2 \\ 15 & -9 & 6 \\ 10 & -6 & 4\end{array}\right]$
- $A$ is idempotent, i.e., $A^{2}=A$. Example: $A=\left[\begin{array}{ccc}2 & -2 & -4 \\ -1 & 3 & 4 \\ 1 & -2 & -3\end{array}\right]$
- $A$ is of rank one: $A=u v^{T}$ for $u, v \in \mathbb{R}^{n}$

$$
A^{k}=\left(v^{T} u\right)^{k-1} A, k=1,2, \ldots
$$

[^1]
## Method 2 - Jordan Canonical Form

- All matrices, whether diagonalizable or not, have a Jordan canonical form: $A=T J T^{-1}$, then $e^{A t}=T e^{J t} T^{-1}$
- Generally, $J=\left[\begin{array}{ccc}J_{1} & & \\ & \ddots & \\ & & J_{p}\end{array}\right], J_{i}=\left[\begin{array}{cccc}\lambda_{i} & 1 & & \\ & \lambda_{i} & \ddots & \\ & & \ddots & 1 \\ & & & \lambda_{i}\end{array}\right] \in \mathbb{R}^{n_{i} \times n_{i}} \Rightarrow$,

$$
e^{J_{i} t}=\left[\begin{array}{cccc}
e^{\lambda_{i} t} & t e^{\lambda_{i} t} & \ldots & \frac{t^{n_{i}-1} e^{\lambda_{i} t}}{\left(n_{i}-1\right)!} \\
0 & e^{\lambda_{i} t} & \ddots & \frac{t^{n_{i}-2} e^{\lambda_{i} t}}{\left(n_{i}-2\right)!} \\
\vdots & 0 & \ddots & \vdots \\
0 & \ldots & 0 & e^{\lambda_{i} t}
\end{array}\right] \Rightarrow e^{A t}=T\left[\begin{array}{ccc}
e^{J_{1} t} & & \\
& \ddots & \\
& & e^{J_{o} t}
\end{array}\right] T^{-1}
$$

- Jordan blocks and marginal stability


## Example 1

- Find $e^{A\left(t-t_{0}\right)}$ for matrix $A$ given by:

$$
A=T J T^{-1}=\left[\begin{array}{llll}
v_{1} & v_{2} & v_{3} & v_{4}
\end{array}\right]\left[\begin{array}{cccc}
-1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & -1
\end{array}\right]\left[\begin{array}{llll}
v_{1} & v_{2} & v_{3} & v_{4}
\end{array}\right]^{-1}
$$

- Solution:

$$
e^{A\left(t-t_{0}\right)}=T e^{J\left(t-t_{0}\right)} T^{-1}
$$

$$
=\left[\begin{array}{llll}
v_{1} & v_{2} & v_{3} & v_{4}
\end{array}\right]\left[\begin{array}{cccc}
e^{-\left(t-t_{0}\right)} & 0 & 0 & 0 \\
0 & 1 & t-t_{0} & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & e^{-\left(t-t_{0}\right)}
\end{array}\right]\left[\begin{array}{llll}
v_{1} & v_{2} & v_{3} & v_{4}
\end{array}\right]^{-1}
$$

## Example 2 - Quiz Time

- Consider a dynamical system defined by:

$$
\begin{gathered}
A=\left[\begin{array}{ccc}
1 & -1 & 0 \\
1 & -1 & 0 \\
0 & 0 & 0
\end{array}\right], B=\left[\begin{array}{ll}
1 & 0 \\
0 & 0 \\
0 & 1
\end{array}\right], C=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \\
D=0, x\left(t_{0}\right)=x(1)=\left[\begin{array}{lll}
0 & 1 & 1
\end{array}\right]^{\top}
\end{gathered}
$$

- Determine $y(t)$ if $u(t)=\left[\begin{array}{l}1 \\ 1\end{array}\right] 1^{+}(t)$.
- Solution: $y(t)=\left[\begin{array}{c}0.5(t-1)^{2} \\ t-1\end{array}\right]$
- MATLAB demo


## From CTLTI to DTLTI Systems

- Given $A, B, C, D$ for a continuous time, LTI system, what are the the equivalent matrices for the discrete dynamics?
- For a sampling period $T$, the equivalent representation is:

$$
\tilde{A}=e^{A T}, \tilde{B}=\left[\int_{k T}^{(k+1) T} e^{A((k+1) T-\tau)} B d \tau\right], \tilde{C}=C, \tilde{D}=D
$$

- Dynamics: $x(k+1)=\tilde{A} x(k)+\tilde{B} u(k), y(k)=\tilde{C} x(k)+\tilde{D} u(k)$
- MATLAB command: [Ad,Bd]=c2d(A,B,T)


## LTI Discrete Systems

- LTI dynamical system:

$$
\begin{align*}
x(k+1) & =A x(k)+B u(k), \quad x_{\text {initial }}=x_{k_{0}}  \tag{3}\\
y(k) & =C x(k)+D u(k) \tag{4}
\end{align*}
$$

- We now know that the solution is given by:

$$
x(k)=A^{k} x_{k_{0}}+\sum_{i=k_{0}}^{k} A^{k-1-i} B u(i)=A^{k} x_{k_{0}}+\sum_{i=k_{0}}^{k} A^{i} B u(k-1-i)
$$

- Clearly the output solution is:

$$
y(k)=\underbrace{C\left(A^{k} x_{k_{0}}\right)}_{\text {zero input response }}+\underbrace{C \sum_{i=k_{0}}^{k} A^{k-1-i} B u(i)+D u(k)}_{\text {zero state response }}
$$

- Question: how do I analytically compute the solution to (3)?
- Answer: you need to (a) evaluate summations and (b) compute matrix powers


## Discrete LTI System Example

- Consider the following time-invariant discrete dynamics:

$$
x(k+1)=T\left[\begin{array}{cc}
0 & 0 \\
0 & 0.25
\end{array}\right] T^{-1} x(k)+T\left[\begin{array}{l}
1 \\
1
\end{array}\right] u(k)
$$

- Determine $A^{k}$. Solution: $A^{k}=T\left[\begin{array}{cc}0^{k} & 0 \\ 0 & 0.25^{k}\end{array}\right] T^{-1}$
- Find the zero-state state-response and $x(9)$ given that $u(k)=0.5^{k} 1^{+}(k)$
- Solution? Work it out and show it to me next time...


## Controllability - 1

A CTLTI system is defined as follows:

$$
\dot{x}=A x+B u, x(0)=x_{0}
$$

- Over the time interval $\left[0, t_{f}\right]$, control input $u(t) \forall t \in\left[0, t_{f}\right]$ steers the state from $x_{0}$ to $x_{t_{f}}$ :

$$
x\left(t_{f}\right)=e^{A t_{f}} x_{0}+\int_{0}^{t_{f}} e^{A(t-\tau)} B u(\tau) d \tau
$$

## Controllability Definition

CTLTI system is controllable at time $t_{f}>0$ if for any initial state and for any target state $\left(x_{t_{f}}\right)$, a control input $u(t)$ exists that can steer the system states from $x(0)$ to $x\left(t_{f}\right)$ over the defined interval.

- Reachable subspace: space of all reachable states
- DTLTI Controllability


## Controllability — 2

## Controllability Test

For a system with $n$ states and $m$ control inputs, the test for controllability is that matrix

$$
\mathcal{C}=\left[\begin{array}{lllll}
B & A B & A^{2} B & \cdots & A^{n-1} B
\end{array}\right] \in \mathbb{R}^{n \times n m}
$$

has full row rank (i.e., $\operatorname{rank}(\mathcal{C})=n$ ).

- The test is equivalent for DTLTI and CTLTI systems


## Theorem

The following statements are equivalent:
(1) $\mathcal{C}$ is full rank
(2) PBH Test: for any $\lambda \in \mathbb{C}, \operatorname{rank}[\lambda I-A B]=n$
(3) Eigenvector Test: for any evector $v \in \mathbb{C}$ of $A, v^{T} B \neq 0$
(9) For any $t_{f}>0$, the so-called Gramian matrix is nonsingular:

$$
W\left(t_{f}\right)=\int_{0}^{t_{f}} e^{A \tau} B B^{\top} e^{A^{\top} \tau} d \tau
$$

## Observability — 1

DTLTI system ( $n$ states, $m$ inputs, $p$ outputs):

$$
\begin{align*}
x(k+1) & =A x(k)+B u(k), \quad x(0)=x_{0}  \tag{5}\\
y(k) & =C x(k)+D u(k) \tag{6}
\end{align*}
$$

- Application: given that $A, B, C, D$, and $u(k), y(k)$ are known $\forall k=0: 1: k-1$, can we determine $x(0)$ ?
- Solution:

$$
\left[\begin{array}{c}
y(0) \\
y(1) \\
\vdots \\
y(k-1)
\end{array}\right]=\left[\begin{array}{c}
C \\
C A \\
\vdots \\
C A^{k-1}
\end{array}\right] x(0)+\left[\begin{array}{cccc}
D & 0 & \ldots & 0 \\
C B & D & \ddots & \vdots \\
\vdots & \ddots & \ddots & 0 \\
C A^{k-2} B & \ldots & C B & 0
\end{array}\right]\left[\begin{array}{c}
u(0) \\
u(1) \\
\vdots \\
u(k-1)
\end{array}\right]
$$

## Observability — 2

$$
\left[\begin{array}{c}
y(0) \\
y(1) \\
\vdots \\
y(k-1)
\end{array}\right]=\left[\begin{array}{c}
C \\
C A \\
\vdots \\
C A^{k-1}
\end{array}\right] x(0)+\left[\begin{array}{cccc}
D & 0 & \ldots & 0 \\
C B & D & \ddots & \vdots \\
\vdots & \ddots & \ddots & 0 \\
C A^{k-2} B & \ldots & C B & 0
\end{array}\right]\left[\begin{array}{c}
u(0) \\
u(1) \\
\vdots \\
u(k-1)
\end{array}\right]
$$

- Or:

$$
\begin{aligned}
Y(k-1) & =\mathcal{O}_{k} x(0)+\mathcal{T}_{k} U(k-1) \Rightarrow \\
\mathcal{O}_{k} x(0) & =Y(k-1)-\mathcal{T}_{k} U(k-1)
\end{aligned}
$$

- Since $\mathcal{O}_{k}, \mathcal{T}_{k}, Y(k-1), U(k-1)$ are all known quantities, then we can find a unique $x(0)$ iff $\mathcal{O}_{k}$ is full rank


## Observability Definition

DTLTI system is observable at time $k$ if the initial state $x(0)$ can be uniquely determined from any given $u(0), \ldots, u(k-1), y(0), \ldots, y(k-1)$.

- Unobservable subspace: null-space of $\mathcal{O}_{k}$


## Observability

## Observability Test

For a system with $n$ states and $p$ outputs, the test for observability is that matrix $\mathcal{O}=\left[\begin{array}{c}C \\ C A \\ \vdots \\ C A^{n-1}\end{array}\right] \in \mathbb{R}^{n p \times n}$ has full column rank (i.e., $\operatorname{rank}(\mathcal{C})=n$ ).

- The test is equivalent for DTLTI and CTLTI systems


## Theorem

The following statements are equivalent:
(1) $\mathcal{O}$ is full rank, system is observable
(2) PBH Test: for any $\lambda \in \mathbb{C}, \operatorname{rank}\left[\begin{array}{c}\lambda I-A \\ C\end{array}\right]=n$
(3) Eigenvector Test: for any evector $v \in \mathbb{C}$ of $A, C v \neq 0$
(9) The matrices $\sum_{i=0}^{n-1}\left(A^{\top}\right)^{i} C^{\top} C A^{i}$ for the DTLIT and $\int_{0}^{t} e^{A^{\top} \tau} C^{\top} C e^{A \tau} d \tau$ for the CTLTI are nonsingular

## Example

- Consider a dynamical system defined by:

$$
A=\left[\begin{array}{ccc}
1 & -1 & 0 \\
1 & -1 & 0 \\
0 & 0 & 0
\end{array}\right], B=\left[\begin{array}{ll}
1 & 0 \\
0 & 0 \\
0 & 1
\end{array}\right], C=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

- Is this system controllable?
- Is this system observable?
- Answers: Yes, Yes!
- MATLAB commands: ctrb, obsv


## Controller Design

- Open-loop control: design $u(t)$ directly, i.e., through optimization or learning
- Closed-loop control: design $u(t)$ as a function of state, i.e., $u(t)=g(x, t)$
- Linear state-feedback (LSF) control: design matrix $K$ such that the control $u(t)=-K x(t)+v(t)$ yields a desirable state-response
- Dynamics under LSF:

$$
\dot{x}(t)=(A-B K) x(t)+B v(t), \quad v(t) \text { is a reference signal }
$$

- Objective: design $K$ such that eigenvalues of $A-B K$ are stable or at a certain location
- Fact: if the system is controllable, eig $(A-B K)$ can be arbitrarily reassigned


## Stabilizability

## Stabilizability Definition

DTLTI or CTLIT system, defined by $(A, B)$, is stabilizable if there exists a matrix $K$ such that $A-B K$ is stable.

## Stabilizability Theorem

DTLTI or CTLIT system, defined by $(A, B)$ is stabilizable if all its uncontrollable modes correspond to stable eigenvalues of $A$.

Facts:

- $A$ is stable $\Rightarrow(A, B)$ is stabilizable
- $(A, B)$ is controllable $\Rightarrow(A, B)$ is stabilizable as well
- $(A, B)$ is not controllable $\Rightarrow$ it could still be stabilizable


## Observer Design

Original system with unknown $x(0)$ :

$$
\begin{gathered}
\dot{x}=A x, \\
y=C x
\end{gathered}
$$

Simulator with linear feedback:

$$
\begin{aligned}
& \dot{\hat{x}}=A \hat{x}+L(y-\hat{y}), \quad \hat{x}(0)=0 \\
& \hat{y}=C \hat{x}
\end{aligned}
$$



- Define dynamic estimation error: $e(t)=x(t)-\hat{x}(t)$
- Error dynamics:

$$
\dot{e}(t)=\dot{x}(t)-\dot{\hat{x}}(t)=(A-L C)(x(t)-\hat{x}(t))=(A-L C) e(t)
$$

- Hence, $e(t) \rightarrow 0$, as $t \rightarrow \infty$ if eig $(A-L C)<0$
- Objective: design observer/estimator gain $L$ such that eig $(A-L C)<0$ or at a certain location


## Detectability

## Detectability Definition

DTLTI or CTLIT system, defined by $(A, C)$, is detectable if there exists a matrix $L$ such that $A-L C$ is stable.

## Detectability Theorem

DTLTI or CTLIT system, defined by $(A, C)$ is detectable if all its unobservable modes correspond to stable eigenvalues of $A$.

Facts:

- $A$ is stable $\Rightarrow(A, C)$ is detectable
- $(A, C)$ is observable $\Rightarrow(A, C)$ is detectable as well
- $(A, B)$ is not observable $\Rightarrow$ it could still be detectable
- If system has some unobservable modes that are unstable, then no gain $L$ can make $A-L C$ stable
- $\Rightarrow$ Observer will fail to track system state


## Example - Controller Design

- Given a system characterized by $A=\left[\begin{array}{ll}1 & 3 \\ 3 & 1\end{array}\right], B=\left[\begin{array}{l}1 \\ 0\end{array}\right]$
- Is the system stable? What are the eigenvalues?
- Solution: unstable, eig $(A)=4,-2$
- Find linear state-feedback gain $K$ (i.e., $u=-K x$ ), such that the poles of the closed-loop controlled system are -3 and -5
- Characteristic polynomial: $\lambda^{2}+\left(k_{1}-2\right) \lambda+\left(3 k_{2}-k_{1}-8\right)=0$
- Solution: $u=-K x=-\left[\begin{array}{ll}10 & 11\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=-10 x_{1}-11 x_{2}$
- MATLAB command: $K=$ place(A,B,eig_desired)
- What if $A=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right], B=\left[\begin{array}{l}1 \\ 1\end{array}\right]$, can we stabilize the system?


## Example - Observer Design

- Given a system characterized by $A=\left[\begin{array}{ll}1 & 3 \\ 3 & 1\end{array}\right], C=\left[\begin{array}{ll}0.5 & 1\end{array}\right]$
- Find linear state-observer gain $L=\left[l_{1} l_{2}\right]^{\top}$ such that the poles of the estimation error are -5 and -3
- Characteristic polynomial:

$$
\lambda^{2}+\left(-2+l_{2}+0.5 l_{1}\right) \lambda+\left(-8+0.5 l_{2}+2.5 l_{1}\right)=0
$$

- Solution: $L=\left[\begin{array}{l}8 \\ 6\end{array}\right]$
- MATLAB command: $L=$ place(A', C', eig_desired)


## MATLAB Example


$\mathrm{A}=[1-0.8 ; 10]$;
$\mathrm{B}=[0.5$; 0 ];
$\mathrm{C}=\left[\begin{array}{ll}1 & -1\end{array}\right]$;
\% Selecting desired poles
eig_desired=[.5 .7];
L=place(A', C', eig_desired)';
$\%$ Initial state
$\mathrm{x}=[-10 ; 10]$;
\% Initial estimate
xhat $=[0 ; 0]$;
\% Dynamic Simulation
$\mathrm{XX}=\mathrm{x}$;
XXhat=xhat;
$\mathrm{T}=10$;
\% Constant Input Signal
$\mathrm{UU}=.1 *$ ones $(1, \mathrm{~T})$;
for $k=0: T-1$,
$\mathrm{u}=\mathrm{UU}(\mathrm{k}+1)$;
$y=C * x$;
yhat $=$ C*xhat;
$\mathrm{x}=\mathrm{A} * \mathrm{x}+\mathrm{B} * \mathrm{u}$;
xhat $=A * x$ xhat $+B * u+L *(y-y h a t)$;
$\mathrm{XX}=[\mathrm{XX}, \mathrm{x}]$;
XXhat=[XXhat, xhat];
end
\% Plotting Results
subplot $(2,1,1)$
plot(0:T, [XX(1,:); XXhat(1,:)]);
subplot $(2,1,2)$
plot(0:T,[XX(2,:);XXhat(2,:)]);

## Observer-Based Control - 1

- Recall that for LSF control: $u(t)=-K x(t)$
- What if $x(t)$ is not available, i.e., it can only be estimated?
- Solution: get $\hat{x}$ by designing $L$
- Apply LSF control using $\hat{x}$ with a LSF matrix $K$ to both the original system and estimator
- Question: how to design $K$ and $L$ simultaneously? Poles of the closed-loop system?


## Observer-Based Control - 2



## Observer-Based Control - 3

- Closed-loop dynamics:

$$
\begin{align*}
\dot{x}(t) & =A x(t)-B K \hat{x}(t)  \tag{7}\\
\dot{\hat{x}}(t) & =A \hat{x}(t)+L(y(t)-\hat{y}(t))-B K \hat{x}(t) \tag{8}
\end{align*}
$$

- Or

$$
\left[\begin{array}{c}
\dot{x}(t) \\
\dot{\hat{x}}(t)
\end{array}\right]=\left[\begin{array}{cc}
A & -B K \\
L C & A-L C-B K
\end{array}\right]\left[\begin{array}{l}
x(t) \\
\hat{x}(t)
\end{array}\right]
$$

- Transformation: $\left[\begin{array}{l}x(t) \\ e(t)\end{array}\right]=\left[\begin{array}{c}x(t) \\ x(t)-\hat{x}(t)\end{array}\right]=\left[\begin{array}{cc}I & 0 \\ I & -I\end{array}\right]\left[\begin{array}{l}x(t) \\ \hat{x}(t)\end{array}\right]$
- Hence, we can write:

$$
\left[\begin{array}{l}
\dot{x}(t) \\
\dot{e}(t)
\end{array}\right]=\underbrace{\left[\begin{array}{cc}
A-B K & B K \\
0 & A-L C
\end{array}\right]}_{A_{\mathrm{cl}}}\left[\begin{array}{l}
x(t) \\
e(t)
\end{array}\right]
$$

- If the system is controllable \& observable $\Rightarrow \operatorname{eig}\left(A_{\text {textcl }}\right)$ can be arbitrarily assigned by proper $K$ and $L$
- What if the system is stabilizable and detectable?


## Nonlinear Systems

- Many dynamical systems are not originally linear
- To analyze the system (stability, observability, controllability), we need a linearized representation of the system
- For a nonlinear dynamical system $\dot{x}(t)=f(x)$, follow this procedure to linearize:
(1) Put the ODE in state-space vector form
(2) Find all equilibrium points by solving $f(x)=0$
(3) List all the possible solutions: $x_{e}^{1}, x_{e}^{2}, x_{e}^{3}, \ldots$
(9) Find the Jacobian matrix of the nonlinear dynamics, $D f(x)$
(3) Linearize using Taylor series expansion:

$$
\dot{x}(t)=f\left(x_{e}^{i}\right)+\left.D f(x)\right|_{x=x_{e}^{i}}\left(x-x_{e}^{i}\right)
$$

(6) Determine which equilibrium points are stable. If $\left.D f(x)\right|_{x=x_{e}^{i}} \prec 0$, the equilibrium point is locally stable.

## Linearization Example

$$
\begin{aligned}
\dot{x}_{1} & =-x_{1}^{2}+x_{2} \\
\dot{x}_{2} & =3-x_{2}-x_{3} \\
\dot{x}_{1} & =2-x_{3}
\end{aligned}
$$

- Find all the equilibrium points for the given nonlinear system and determine their corresponding local stability
- Solution:

$$
\begin{aligned}
& x_{e}^{1}=\left[\begin{array}{l}
1 \\
1 \\
2
\end{array}\right], \text { asymptotically stable } \\
& x_{e}^{2}=\left[\begin{array}{c}
-1 \\
1 \\
2
\end{array}\right], \text { unstable }
\end{aligned}
$$

## Questions And Suggestions?




[^0]:    ${ }^{1}$ Trace of a matrix is the sum of its diagonal entries.

[^1]:    ${ }^{2}$ Any triangular matrix with 0 s along the main diagonal is nilpotent

