Module 02
 CPS Background: Linear Systems Preliminaries

Ahmad F. Taha

EE 5243: Introduction to Cyber-Physical Systems
Email: ahmad.taha@utsa.edu
Webpage: http://engineering.utsa.edu/~taha/index.html

August 25, 2015

In Class Assessment Exam

- Objective: assess students' knowledge of the course prerequisites
- You are not supposed to do so much work for this exam - it's only assessment, remember!
- You will receive a perfect grade whether you know the answers or not

Linear Algebra - 1

- Find the eigenvalues, eigenvectors, and inverse of matrix

$$
\boldsymbol{A}=\left[\begin{array}{ll}
1 & 4 \\
3 & 2
\end{array}\right]
$$

- Answers
- Eigenvalues: $\lambda_{1,2}=5,-2$
- Eigenvectors: $\boldsymbol{v}_{1}=\left[\begin{array}{ll}1 & 1\end{array}\right]^{\top}, \boldsymbol{v}_{2}=\left[\begin{array}{ll}-\frac{4}{3} & 1\end{array}\right]^{\top}$
- Inverse: $\boldsymbol{A}^{-1}=-\frac{1}{10}\left[\begin{array}{cc}2 & -4 \\ -3 & 1\end{array}\right]$
- Write \boldsymbol{A} in the matrix diagonal transformation, i.e., $\boldsymbol{A}=\boldsymbol{T} \boldsymbol{D} \boldsymbol{T}^{-1}-\boldsymbol{D}$ is the diagonal matrix containing the eigenvalues of \boldsymbol{A}.
- Answers
- Diagonal Transformation: $\boldsymbol{A}=\left[\begin{array}{ll}\boldsymbol{v}_{1} & \boldsymbol{v}_{1}\end{array}\right]\left[\begin{array}{cc}\lambda_{1} & 0 \\ 0 & \lambda_{2}\end{array}\right]\left[\begin{array}{ll}\boldsymbol{v}_{1} & \boldsymbol{v}_{1}\end{array}\right]^{-1}$

Linear Algebra - 2

- Find the determinant, rank, and null-space set of this matrix:

$$
\boldsymbol{B}=\left[\begin{array}{lll}
0 & 1 & 2 \\
1 & 2 & 1 \\
2 & 7 & 8
\end{array}\right]
$$

- Answers
$-\operatorname{det}(\boldsymbol{B})=0$
$-\operatorname{rank}(\boldsymbol{B})=2$
$-\operatorname{null}(\boldsymbol{B})=\alpha\left[\begin{array}{c}3 \\ -2 \\ 1\end{array}\right], \forall \alpha \in \mathbb{R}$
- Is there a relationship between the determinant and the rank of a matrix?
- Answer
- Yes! Matrix drops rank if determinant $=$ zero \rightarrow minimal of 1 zero evalue
- True or False?
- $\boldsymbol{A B}=\boldsymbol{B} \boldsymbol{A}$ for all \boldsymbol{A} and \boldsymbol{B}
- \boldsymbol{A} and \boldsymbol{B} are invertible $\rightarrow(\boldsymbol{A}+\boldsymbol{B})$ is invertible

LTI Systems - 1

- LTI dynamical system can be represented as follows:

$$
\begin{align*}
\dot{\mathbf{x}}(t) & =\boldsymbol{A} \mathbf{x}(t)+\boldsymbol{B u}(t), \quad \mathbf{x}_{\text {initial }}=\mathbf{x}_{t_{0}} \tag{1}\\
\mathbf{y}(t) & =\boldsymbol{C} \mathbf{x}(t)+\boldsymbol{D u}(t) \tag{2}
\end{align*}
$$

- $\mathbf{x}(t)$: dynamic state-vector of the LTI system, $\mathbf{u}(t)$: control input-vector
- $\mathbf{y}(t)$: output-vector and $\boldsymbol{A}, \boldsymbol{B}, \boldsymbol{C}, \boldsymbol{D}$ are constant matrices
- What is the closed-form, state solution to the above differential equation for any time-varying control input, i.e., $\mathbf{x}(t)=$?
- Answer:

$$
\boldsymbol{x}(t)=e^{\boldsymbol{A}\left(t-t_{0}\right)} \boldsymbol{x}_{t_{0}}+\int_{t_{0}}^{t} e^{\boldsymbol{A}(t-\tau)} \boldsymbol{B} \boldsymbol{u}(\tau) d \tau
$$

Can you verify that the above solution is actually correct? Hint:

$$
\underbrace{\frac{\mathrm{d}}{\mathrm{~d} \theta}\left(\int_{a(\theta)}^{b(\theta)} f(x, \theta) \mathrm{d} x\right)=\int_{a(\theta)}^{b(\theta)} \partial_{\theta} f(x, \theta) \mathrm{d} x+f(b(\theta), \theta) \cdot b^{\prime}(\theta)-f(a(\theta), \theta) \cdot a^{\prime}(\theta)}
$$

LTI Systems — 2

- What are the poles of the above dynamical system? Define asymptotic stability. What's the difference between marginal and asymptotic stability?
- Answers:
- Poles: eig(\boldsymbol{A})
- Asymptotic stability: poles strictly in the LHP
- Marginal stability: some poles can be on the imaginary axis
- What is the transfer function $\left(H(s)=\frac{Y(s)}{U(s)}\right)$ of the above system?
- Answers:
- TF:

$$
H(s)=\boldsymbol{C}(s \boldsymbol{I}-\boldsymbol{A})^{-1} \boldsymbol{B}+\boldsymbol{D}
$$

- Above TF valid for MIMO systems - it becomes a TF matrix, rather than a scalar quantity
- See Chen [1995] for more details
- What is the state-transition matrix for the above system?
- Answer:
$-\phi\left(t, t_{0}\right)=e^{\boldsymbol{A}\left(t-t_{0}\right)}$
- How about linear, time-varying systems?
- Under what conditions is the above dynamical system controllable? Observable? Stabilizable? Detectable?
- Answers:
- Controllability
- Observability
- Stabilizability
- Detectability

Optimal Control and Dynamic Observers - 1

- Define the linear quadratic regulator problem for LTI systems in both, words and equations
- Answers:
- Objective: minimize the total cost of state-deviation and consumed control (i.e., taking control actions)
- Constraints: state-dynamics, control inputs, initial conditions
- Equations:

$$
\begin{array}{cl}
\operatorname{minimize}_{\boldsymbol{u}(t), \boldsymbol{x}(t)} & J=\boldsymbol{x}^{\top}\left(t_{1}\right) \boldsymbol{F}\left(t_{1}\right) \boldsymbol{x}\left(t_{1}\right)+\int_{t_{0}}^{t_{1}}\left(\boldsymbol{x}^{\top} \boldsymbol{Q} \boldsymbol{x}+\boldsymbol{u}^{\top} \boldsymbol{R} \boldsymbol{u}+2 \boldsymbol{x}^{\top} \boldsymbol{N} \boldsymbol{u}\right) d t \\
\text { subject to } & \begin{aligned}
& \dot{\boldsymbol{x}}(t)=\boldsymbol{A} \boldsymbol{x}(t)+\boldsymbol{B} \boldsymbol{u}(t) \\
& \boldsymbol{x}\left(t_{i}\right)=\boldsymbol{x}_{t_{i}} \\
& \boldsymbol{u} \in \mathcal{U}, \boldsymbol{x} \in \mathcal{X}
\end{aligned}
\end{array}
$$

Optimal Control and Dynamic Observers - 2

- What is the optimal solution to an optimal control problem? What does it physically mean for CPSs?
- Answers:
- It's the optimal trajectory of the control input and the corresponding state-trajectory
- Physical meaning: you're better off selecting this control input, among all other - possibly infinite - control input alternatives
- What is a generic dynamic observer? Luenberger observer?
- Answer:
- An estimator for internal states of the system

Optimization - 1

- Let $f(\boldsymbol{x})$ be a multi-variable function of three variables, as follows:

$$
f\left(x_{1}, x_{2}, x_{3}\right)=x_{1} x_{2} x_{3}+2 x_{2}^{3} x_{1}^{2}-4 \cos \left(x_{3} x_{2}\right)+\log \left(\cos \left(x_{2}\right)^{2}\right)+4 x_{3}-2 x_{1}
$$

- Find the Jacobian and Hessian of $f(\mathbf{x})$
- Answers:

$$
\nabla f=\left[\begin{array}{c}
4 x_{1} x_{2}^{3}+x_{3} x_{2}-2 \\
6 x_{1}^{2} x_{2}^{2}+x_{1} x_{3}-\left(2 \sin \left(x_{2}\right)\right) / \cos \left(x_{2}\right)+4 x_{3} \sin \left(x_{2} x_{3}\right) \\
x_{1} x_{2}+4 x_{2} \sin \left(x_{2} x_{3}\right)+4
\end{array}\right]
$$

$$
\nabla^{2} f=
$$

$$
\left[\begin{array}{ccc}
4 x_{2}^{3} & 12 x_{1} x_{2}^{2}+x_{3} & x_{2} \\
12 x_{1} x_{2}^{2}+x_{3} & 12 x_{1}^{2} x_{2}-\left(2 \sin \left(x_{2}\right)^{2}\right) / \cos \left(x_{2}\right)^{2}+4 x_{3}^{2} \cos \left(x_{2} x_{3}\right)-2 & x_{1}+4 \sin \left(x_{2} x_{3}\right)+4 x_{2} x_{3} \cos \left(x_{2} x_{3}\right) \\
x_{2} & x_{1}+4 \sin \left(x_{2} x_{3}\right)+4 x_{2} x_{3} \cos \left(x_{2} x_{3}\right) & 4 x_{2}^{2} \cos \left(x_{2} x_{3}\right)
\end{array}\right]
$$

Optimization - 2

- What is an optimization problem? An unfeasible, feasible solution, an optimal solution to a generic optimization problem?
- What is a convex optimization problem? Define it rigorously
- Answers:
- An optimization problem of finding some $x^{*} \in \mathcal{X}$ such that:

$$
f\left(\boldsymbol{x}^{*}\right)=\min \{f(\boldsymbol{x}): \boldsymbol{x} \in \mathcal{X}\}
$$

* $\mathcal{X} \subset \mathbb{R}^{n}$ is the feasible set and $f(\boldsymbol{x}): \mathbb{R}^{n} \rightarrow \mathbb{R}$ is the objective, is called convex if \mathcal{X} is a closed convex set and $f(\boldsymbol{x})$ is convex on \mathbb{R}^{n}
- Alternatively, convex optimization problems can be written as:

minimize	$f(\boldsymbol{x})$
subject to	$g_{i}(\boldsymbol{x}) \leq 0, \quad i=1, \ldots, m$

* $f, g_{1}, \ldots, g_{m}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ are convex
- See [Boyd \& Vandenberghe, 2004] for more

Optimization - 3

- What is a semi-definite program (SDP)? Define it rigorously.
- Answers:
- A semidefinite program minimizes a linear cost function of the optimization variable $z \in \mathbb{R}^{n}$ subject to a matrix inequality condition
- An SDP can formulated as follows:

$$
\begin{array}{cl}
\underset{z \in \mathbb{R}^{n}}{\operatorname{minimize}} & f(\boldsymbol{z}) \\
\text { subject to } & \boldsymbol{F}(\boldsymbol{z}) \succeq \boldsymbol{O}, \tag{7}
\end{array}
$$

* Where

$$
\boldsymbol{F}(\boldsymbol{z}) \triangleq \boldsymbol{F}_{0}+\sum_{i=1}^{n} z_{i} \boldsymbol{F}_{i}
$$

- Given the following optimization problem,

$$
\begin{array}{rc}
\underset{\boldsymbol{x}}{\operatorname{minimize}} & c(\boldsymbol{x}) \\
\text { subject to } & \boldsymbol{h}(\boldsymbol{x}) \leq \mathbf{0} \\
& \boldsymbol{g}(\boldsymbol{x})=\mathbf{0} \tag{8}
\end{array}
$$

what are the corresponding Karush-Kuhn-Tucker (KKT) conditions?

Questions And Suggestions?

References I

Boyd, S., \& Vandenberghe, L. (2004). Convex Optimization. New York, NY, USA: Cambridge University Press.
Chen, C.-T. (1995). Linear System Theory and Design. New York, NY, USA: Oxford University Press, Inc., 2nd ed.

